当前位置:文档之家› 自动控制系统的性能指标及要求

自动控制系统的性能指标及要求


图2-1 控制系统动态过程曲线 图2-2 控制系统动态过程
由于被控对象的具体情况不同,各系统对稳、快、准 的要求应有所侧重。而且同一个系统,稳、快、准的要求 是相互制约的。提高动态过程的快速性,可能会引起系统 的剧烈振荡,改善系统的平稳性,控制过程又可能很迟缓 ,甚至会使系统的稳态精度很差。分析和解决这些矛盾, 将是自动控制理论学科讨论的重要内容。
2.3 自动控制系统的过渡过程
控制系统在动态过程中,被控变量从一个稳态到达另 一个稳态随时间变化的过程称为过渡过程,也就是系统从 一个平衡状态过渡到另一平衡状态的过程。
被控变量随时间的变化规律首先取决于作用于系统的 干扰形式。在生产中,出现的干扰是没有固定形式的,且 多半属于随机性质。在分析和设计控制系统时,为了安全 和方便,常选择一些定型的干扰形式,其中常用的是阶跃 干扰,如图2-3所示。
稳定性和快速性反映了系统在控制过程中的性能。系 统在跟踪过程中,被控量偏离给定值越小,偏离的时间越 短,说明系统的动态精度偏高,如图2-2中的曲线②所示。 3. 准确性
是指系统在动态过程结束后,其被控变量(或反馈量 )对给定值的偏差而言,这一偏差即为稳态误差,它是衡 量系统稳态精度的指标,反映了动态过程后期的性能。
在自动化生产中,了解系统的静态是必要的,但是了 解系统的动态更为重要。这是因为在生产过程中,干扰是客 观存在的,是不可避免的。这些干扰是破坏系统平衡状态引 起被控变量发生变化的外界因素。因此,就需要通过自动化 装置不断地施加控制作用去对抗或抵消干扰作用的影响,从 而使被控变量保持在工艺生产所要求的技术指标上。
假若一个系统原先处于相对平衡状态即静态,由于干 扰的作用而破坏了这种平衡时,被控变量就会发生变化,从 而使控制器、控制阀等自动化装置改变原来平衡时所处的状 态,产生一定的控制作用来克服干扰的影响,并力图使系统 恢复平衡。从干扰发生开始,经过控制,直到系统重新建立 平衡,在这段时间中,整个系统的各个环节和信号都处于变 化状态之中,所以这种状态叫做动态。
好地克服,同时,这种干
扰的形式简单,容易实现说,自动控制系统的阶跃干扰作用下的过渡过程 有如图2-4所示的几种基本形式。
1. 非周期衰减过程 被控变量在给定值的某一侧作缓慢变化,没有来回波动, 最后稳定在某一数值上,这种过渡过程形式为非周期衰减过 程,如图2-4(a)所示。
第2章 自动控制系统的性能指标及要求
2.1 自动控制系统的基本要求 2.2自动控制系统的静态与动态 2.3 自动控制系统的过渡过程 2.4 自动控制系统的性能指标
2.1 自动控制系统的基本要求
为了实现自动控制的任务,必须要求控制系统的被控 变量(输出量)跟随给定值的变化而变化,希望被控变量 在任何时刻都等于给定值,两者之间没有误差存在。然而 ,由于实际系统中总是包含具有惯性或储能元件,同时由 于能源功率的限制,使控制系统在受到外作用时,其被控 变量不可能立即变化,而有一个跟踪过程。
由图可以看出,所谓阶跃干扰就是某一瞬间t0,干 扰(即输入量)突然地阶跃的加到系统上,并继续保
持在这个幅度。采取阶跃干扰的形式来研究自动控制
系统是因为考虑到这种形式的干扰比较突然,比较危
险,它对被控变量的影响也最大。如果一个控制系统
能够有效地克服这种类型
的干扰,那么对于其它比
较缓和的干扰也一定能很
2. 衰减振荡过程 被控变量上下波动,但幅度逐渐减少,最后稳定在某一
数值上,这种过渡过程形式为衰减振荡过程,如图2-4(b) 所示。
3. 等幅振荡过程 被控变量在给定值附近来回波动,且波动幅度保持不变,
这种情况称为等幅振荡过程,如图2-4(c)所示。 4. 发散振荡过程
被控变量来回波动,且波动幅度逐渐变大,即偏离给定值 越来越远,这种情况称为发散振荡过程,如图2-4(d)所示。
图2-4 过渡过程的几种基本形式
2.4 自动控制系统的性能指标
稳定是控制系统能够运行的首要条件,因此只有当 动态过程收敛时,研究系统的动态性能才有意义。控制 系统的过渡过程是衡量控制性能的依据。由于在多数情 况下,都希望得到衰减振荡过程,所以取衰减振荡的过 渡过程形式来讨论控制系统的性能指标。通常在阶跃函 数作用下,测定或计算系统的动态性能。一般认为,阶 跃输入对系统来说是最严峻的工作状态。如果系统在阶 跃函数作用下的动态性能满足要求,那么系统在其它形 式的函数作用下,其动态性能也是令人满意的。
2.2自动控制系统的静态与动态
在自动化领域中,把被控变量不随时间而变化的平 衡状态称为系统的静态,而把被控变量随时间变化的不 平衡的状态称为系统的动态。
当一个自动控制系统的输入(给定和干扰)和输出 均恒定不变时,整个系统就处于一种相对稳定的平衡状 态,系统的各个组成环节如变送器、控制器、控制阀都 不改变其原先的状态,它们的输出信号也都处于相对静 止状态,这种状态就是上述的静态。
控制系统的性能,可以用动态过程的特性来衡量,考 虑到动态过程在不同阶段的特点,工程上常常从稳定性( 稳)、快速性(快)、准确性(准)三个方面来评价自动 控制系统的总体性能。
1. 稳定性
系统在受到外作用后,若控制装置能操纵被控对象,使 其被控变量随时间的增长而最终与给定期望值一致,则称系 统是稳定的,如图2-1曲线①所示。如果被控量随时间的增 长,越来越偏离给定值,则称系统是不稳定的,如图2-1曲 线②所示。
稳定的系统才能完成自动控制的任务,所以,系统稳定 是保证控制系统正常工作的必要条件。一个稳定的控制系统 ,其被控量偏离给定值的初始偏差应随时间的增长逐渐减小 并趋于零。
2. 快速性 快速性是指系统的动态过程进行的时间长短。
过程时间越短,说明系统快速性越好,过程时间持续 越长,说明系统响应迟钝,难以实现快速变化的指令信号 ,如图2-2响应曲线①所示。
假定自动控制系统在阶跃输入作用下,采用时域内的 单项指标来评估控制的好坏。图2-5(a)和(b)分别是给定值 阶跃变化和扰动作用阶跃变化时过渡过程的典型曲线。这 是属于衰减振荡过程。
相关主题