燃气轮机及其辅助系统介绍
- Amount of energy which is unavailable to do work - A measure of disorder
Page 5
Ideal Brayton Cycle
Gas Turbine Application
Note: s denotes entropy
P2 T2 = P T 1 1
η compressor =
η compressor =
Work Ideal Work Actual
Temperature
LEGEND
Ideal Cycle With ηc & ηt
3
(T2 − T1 ) Ideal (T2 − T1 ) Actual
γ −1 γ
2
P2 T2Ideal = T1 P 1
γ γ −1
P T = 3 = 3 P4 T4
γ γ −1
η
Cycle
=
Work Output (MW) Heat Content (Fuel)
(T = 3
- T 4 (T
) - (T - T 3 2
- T ) 2 1 )
Page 6
Real Brayton Cycle
ure ress ge P har Disc ssor pre Com
LEGEND
Ideal Cycle With ηc & ηt With ∆P’s
2
3
n dditio eat A H
pans Expansion
Combustor ∆ ∆P
Temperature
Compres sion
Exhaust ∆P
5L 3.2 1960
5P
1970
1980
1990
2000பைடு நூலகம்
Page 12
Evolution of MHI Gas Turbines
Page 13
Line-Up of MHI Gas Turbine
Page 14
The Efficiency and Power Output of MHI Gas Turbine
Expansio n
Page 10
World wide heavy-duty Gas Turbine manufacturers
Page 11
Evolution of GE Gas Turbines
Output 200MW 9 7 5-6 3-6
3000 RPM 3600 RPM 5100-5230 RPM 6900-7100 RPM
Q = 727 MW
W= 281 MW
∆H4-1 = 446 MW
Page 4
Second Law of Thermodynamics
Basic Principle: Heat moves from hot to cold
Entropy:
ηCarnotCycle
TH − TC = x 100 TH
Combustor ∆P
3
13th stg. Comp. bleed
CD
9th stg. Comp. bleed
Temperature
2
Exhaust ∆P
Compressor Bleed
Inlet ∆P
4
1
Entropy
Page 9
Brayton Cycle – Gas Turbine
QADDED
Compression and Turbine Expansion Inefficiencies
Turbine Compressor
Typical Values for GE Turbines Compressor Efficiency 0.86-0.89 Turbine Efficiency 0.90-0.93
ient Amb re su Pres
Inlet ∆P
4
1
n ejectio Heat R
Entropy
Page 8
Real Brayton Cycle
Parasitic Flows for Turbine Cooling
LEGEND
Ideal Cycle With ηc & ηt With ∆P’s With Cooling Flows
Alstom Gas Turbine Combined Cycle (50 Hz&60 Hz)
Page 20
典型F级机组和E级机组的性能及参数
级简单循环燃气轮机的参考性能( 标准参考条件) 表 1:F级简单循环燃气轮机的参考性能(ISO标准参考条件) : 级简单循环燃气轮机的参考性能 标准参考条件
4 1
Entropy
Page 7
Real Brayton Cycle
Pressure Losses - Inlet, Combustor, Exhaust
Inlet Combustor Exhaust
Typical Values for Turbine Inlet Pressure Loss 3” H2O Exhaust Back Pressure (SC) 5.5” H2O Exhaust Back Pressure (CC) 15” H2O DLN Combustor 6-7% ∆P/P
Squeeze 1 2 Suck
COMPRESSOR
Burn
Turn 3 4 Blow
TURBIN E Shaft Work QREJECTED
Heat Exchanger
Qin
Temperature
3
Compression
4 2 1
Qout
Entropy
COMPRESSOR
The TURBINE transforms TURBINE thermal energy into mechanical energy (3 – 4) used for driving the Compressor & Generator
Page 22
标准参考条件) 表 3:E 级简单循环燃气轮机的参考性能(ISO标准参考条件) : 级简单循环燃气轮机的参考性能( 标准参考条件
生产厂商 型号 功率(MW) 热效率(%) 空气流量(kg/s) 排气流量(kg/s) 压缩比 压气机级数 透平转子进口温度 (TRIT)(℃) 透平级数 透平排气温度(℃) NOx排放量(天然气燃 料)(ppm) 机组重量(~t) 机组近似尺寸(m) 12.3 17 1124 3 538 25 190 20×4.6×4.8 GE PG9171E 123.4 33.79 403.7 SIEMENS V94.2/V94.2A 157/192 34.4/35.8 510/522 519/532 11.1/14.0 17 1105/1290 4 540/572 25/25 295/320 14×12.5×8.4 12.01×6.0×7.4 1 14.0 19 1250* 4 542 25 200 12.5×5.2×5.28 Page 23 MHI M701D 144 34.8 441
Page 15
MHI 701F / 701G Gas Turbine features
Page 16
Siemens Gas Turbines
Page 17
Siemens SGT5-4000F (V94.3A)
Page 18
Alstom GT26 Gas Turbine Features
Page 19
Page 2
Physics
Principle of Conservation of Mass: mass in = mass out (Open System) Principle of Conservation of Energy: energy in = energy out energy may be transformed from one form to another (Power Plant converts Chemical to Thermal to Mechanical to Electrical Energy)
Page 3
First Law of Thermodynamics
General Energy Equation energy in = energy out, or Q = W + ∆H
Example: 9FB Energy Balance
Where: ∆H = total enthalpy change fluid entering system Q = net thermal energy flowing into system during process W = net work done by the system
Gas Turbine & Accessory Systems Introduction 燃气轮机及其辅助系统介绍
Page 1
Index 目录
1. Gas Turbine Principle & General Introduction 燃机原理及概况 2. Gas Turbine Structure 燃机本体结构 3. Gas Turbine Accessory Systems 燃机附属系统 4. Gas Turbine Control System 燃机控制系统 5. Gas Turbine Shipment Weight & Dimension 燃机运输重量及尺寸 6. Gas Turbine Erection Procedure 燃机安装步骤 7. Gas Turbine Commissioning Procedure 燃机调试规程 8. Gas Turbine Performance Procedure 燃机性能试验规程