积分的对称性问题
例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4
D2 D1
(1,1)
例 2:设 D 是以(1,1),(-1,1)和(-1,-1)为顶点的三角形域,D1
∫∫ 为 D 在第一象限的部分。则 (xy + sin ye−x2−y2)dxdy =( )。
⎪⎩ S
S1
f (−x, y, z) = − f (x, பைடு நூலகம், z) f (−x, y, z) = f (x, y, z)
(6)
类似地,可写出关于 y 和关于 z 为奇偶函数的结果(略)。 2.轮换对称性:若积分区域 L 和 S 中 x,y,z 的地位对称,则在被积函数中互换 x,y,z,结果不变。
D3 o
x
∫∫ A.2 sin ye−x2−y2 dxdy D
B.2∫∫ xydxdy
D4
D1
D1
∫∫ C.4 (xy + sin ye−x2−y2)dxdy
D1
D.0
(-1,-1)
图1
·154·
CHINA EDUCATION RESEARCH ANALECTS
高等教育研究 — 学科探讨
分析:这里应选 A。事实上,如图 1,D=D1∪D2∪D3∪D4,由对称性知 ∫∫ xydxdy = 0, ∫∫ xydxdy = 0。∴ ∫∫ xydxdy = 0。
f (−x, y, z) = − f (x, y, z)
∫ ∫ ⎨
⎪⎩
f (x, y, z)ds = 2 f (x, y, z)ds,
L
L1
f (−x, y, z) = f (x, y, z)
(5)
对第一型曲面积分有(S1 为 S 的一半):
⎧⎪⎪∫S∫ f (x, y, z)ds = 0,
⎨
⎪∫∫ f (x, y, z)ds = 2∫∫ f (x, y, z)ds,
L
:
⎧x +
⎨ ⎩
x2
y +
+ z =1 y2 =1
中
x,y
位置对称,得
xds =
L
yds,所以 (3x + y + 2z)ds = 2 (x + y + z)ds = 2 ds = 2a。
L
L
L
L
∫ 例 4:已知曲线 L : x2 + y2 = 1,其周长为 a,求积分 (2xy + 3x2 + 4y2)ds 。
例数 35
46
18
11
16
26
10
16
4
8
4
194
%
18.0 23.7 9.3
5.7
8.2 13.4 5.1
8.2
2.1
4.1
2.1
100
2.在受伤性质和受伤部位调查中,各项运动受伤部位主要集中在踝、膝、腰、腕、指关节。四个部位占总调查量的 79.3%。
二、调查结果与分析
1.在各项运动项目损伤的发生率调查中,足球、篮球、排球、体操、田径在学生中受伤率较高。因为在部分成人高校
里,由于受场地和器材等条件限制,一般球类和田径项目开展的相对多一些,所以受伤面要广一些,其次为体操、武术、健
美操见表 1。
表 1 各项运动项目运动损伤发生率
项目 篮球 足球 排球 跳高 跳远 短跑 单杠 双杠 支撑跳跃 武术 健美操 合计
=
2∫∫
f
(x,
y,
z), (S关于Oxy对称,f
(x,
y,
−z)
=
−
f
(x,
y,
z)
⎪⎩ S
S1
类似地,可写出关于 x 和关于 y 为奇偶函数的结果(略)。(用法见例 5、例 6) 注意点:①第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理相反。②第二型曲面积分的奇偶 性只能一项一项地用,即 dydz 项用曲面 S 关于 Oyz 面对称;dzdx 项用曲面 S 关于 Ozx 面对称;dxdy 项用曲面 S 关于 Oxy 面对称。不能三项一起用,而且 dydz 项只能用曲面 S 关于 Oyz 面对称,不能用关于 Ozx,Oxy 面对称。 针对这两点,下面给出两个例子加以说明。 例 5:设 S 为球面:x2+y2+z2 = R2 在下列四组积分中,同一组的两个积分均为 0 的是( )。
(4)
D
D
常用方式为
∫∫
D
f
(x)dσ
=
∫∫
D
f
( y)dσ
=
1 2
∫(∫ f
D
(x) +
f
( y))dσ
。
∫∫ ∫∫ 例如,
x2dσ = 1 (x2 + y2)dσ
x2 + y2≤1
2 x2+ y2≤1
其中(1)(2)(3)为二重积分的奇偶对称性定理,(4)称为二重积分的轮换对称性定理。对于三重积分也有类似情形。
常用方式为: ∫L f (x)ds = ∫L f ( y)ds = ∫L f (z)ds ;∫∫ f (x)ds = ∫∫ f ( y)ds = ∫∫ f (z)ds 。
S
S
S
∫ 例
3:已知积分曲线
L
:
⎧x +
⎨ ⎩
x2
y +
+ z =1 y2 =1
,其周长为
a,求积分
(3x
L
+
y
+
2z)ds 。
∫ ∫ ∫ ∫ ∫ 分析:由曲线
决此类问题。
定理一:二重积分的对称性定理
1.如果积分域 D 关于 x 轴对称,f(x,y)为 y 的奇(或偶)函数,D1 为 D 中 y ≥ 0 的部分,则:
⎧0,
f (x, − y) = − f (x, y)
∫∫
D
f (x, y)dσ
=
⎪
∫∫ ⎨ 2
⎪⎩ D1
f (x, y)dσ ,
f (x, − y) = f (x, y)
D
D1
在第一型曲线、曲面积分中,也有与重积分完全类似的对称性定理。
定理二:第一型曲线积分、曲面积分的对称性定理
1.奇偶对称性:若 f(x,y,z)关于 x 为奇函数(或偶函数),积分区域 L 或 S 关于 oyz 面对称,则对第一型曲线积分有
(L1 为 L 的一半):
⎧⎪∫L f (x, y, z)ds = 0,
x2 + y 2 ≤1
∫∫ 积分区域 D: x2 + y2 ≤ 1关于 x 轴对称,而被积函数 f ( x, y ) = xy 为 y 的奇函数,由定理 1(1)知: xydσ = 0 。
x2+ y2≤1
∫∫ ∫∫ 又积分区域 D: x2 + y2 ≤ 1关于 y = x 对称,由定理 1(4)知: x2dσ = y2dσ。
定理三:第二型曲面积分的对称性定理
若 f(x,y,z)关 z 为偶函数(或奇函数),积分区域 S 关于 Oxy 面对称,则对第二型曲面积分有:
⎧⎪⎪∫S∫ f (x, y, z)dxdy = 0, (S关于Oxy对称,f (x, y, −z) = f (x, y, z))
⎨
⎪∫∫
f
(x,
y,
z)dxdy
y2 +z2 ≤R2
1
+
⎛ ⎜ ⎝
∂x ∂y
⎞2 ⎟ ⎠
+
⎛ ⎜⎝
∂x ∂z
⎞2 ⎟⎠
dydz
>0
又曲面 S 关于 Oyz,Ozx,Oxy 面都对称,
∴ ∫∫ x2ds = 0 ,S 关于 Oyz 对称,f(x,y,z)= x2 关于 x 为偶函数。
S
∫∫ xdydz = 2 ∫∫ xdydz = 2 ∫∫ R2 − y2 − z 2 dydz > 0,S 关于 Oyz 面对称,f(x,y,z)= x 关于 x 为奇函数。
(1)
2.如果积分域 D 关于 y 轴对称,f(x,y)为 x 的奇(或偶)函数,D2 为 D 中 x ≥ 0 的部分,则: