高强度紧固件失效实例分析ⅰ疲劳断裂的实例一.疲劳断裂的特征1.疲劳与断裂的概念:疲劳是机械零件常见的失效形式,据统计资料分析,在不同类型的零件失效中,有50%—80%是属于疲劳失效。
疲劳断裂在破坏前,零件往往不会产生明显的变形和预先的征兆,但破坏却往往是致命的,会酿成重大事故。
疲劳损坏产生及发展有其特点,最终形成为疲劳断裂。
疲劳问题的探索,最早是在1839年,法国人彭赛列提出材料和结构件的疲劳概念,德国人A·沃勒在1855年研究了代表疲劳性能的应力应变与震动次数的理论(S—N曲线),并且提出了疲劳极限的概念,因此,沃勒被称为材料疲劳理论的奠基人。
疲劳与断裂的力学理论经过一百多年的发展,各行业具体疲劳断裂事例不断涌现,经过科学家及工程师不间断地研究和探索,目前,疲劳断裂科学理论不断地充实和发展,从而在本质上了解了疲劳破坏的机理。
疲劳概念的论述:金属材料在应力或应变的反复作用下发生的性能变化称为疲劳;疲劳断裂:材料承受交变循环应力或应变时,引起的局部结构变化和内部缺陷的不断地发展,使材料的力学性能下降,最终导致产品或材料的完全断裂,这个过程称为疲劳断裂。
也可简称为金属的疲劳。
引起疲劳断裂的应力一般很低,疲劳断裂的发生,往往具有突发性、高度局部性及对各种缺陷的敏感性等特点。
2.疲劳的分类:(1)高周疲劳与低周疲劳10的疲劳,如果作用在零件或构件的应力水平较低,破坏的循环次数高于5称为高周疲劳,弹簧、传动轴、紧固件等类产品一般以高周疲劳见多。
10的疲作用在零件构件的应力水平较高,破坏的循环次数较低,一般低于4劳,称为低周疲劳。
例如压力容器,汽轮机零件的疲劳损坏属于低周疲劳。
(2)应力和应变来分:应变疲劳——高应力,循环次数较低,称为低周疲劳;应力疲劳——低应力,循环次数较高,称为高周疲劳。
复合疲劳,但在实际中,往往很难区分应力与应变类型,一般情况下二种类型兼而有之,这样称为复合疲劳。
(3)按照载荷类型弯曲疲劳扭转疲劳拉拉疲劳与拉压疲劳接触疲劳振动疲劳随着断裂力学的不断发展,行业内广大的技术人员逐渐认识疲劳裂纹的产生及其发展的规律,为控制和减少疲劳引起损害奠定了基础。
3.疲劳断裂的特征:宏观:裂纹源—→扩展区—→瞬断区。
裂纹源:表面有凹槽、缺陷,或者应力集中的区域是产生裂纹源的前提条件。
疲劳扩展区:断面较平坦,疲劳扩展与应力方向相垂直,产生明显疲劳弧线,又称为海滩纹或贝纹线。
瞬断区:是疲劳裂纹迅速扩展到瞬间断裂的区域,断口有金属滑移痕迹,有些产品瞬断区有放射性条纹并具有剪切唇区。
微观:疲劳断裂典型的特征是出现疲劳辉纹。
一些微观试样中还会出现解理与准解理现象(晶体学上的名称,在微观显象上出现的小平面),以及韧窝等微观区域特征。
4.疲劳断裂的特征:(1)断裂时没有明显的宏观塑性变形,断裂前没有明显的预兆,往往是突然性的产生,使机械零件产生的破坏或断裂的现象,危害十分严重。
(2)引起疲劳断裂的应力很低,往往低于静载时屈服强度的应力负荷。
(3)疲劳破坏后,一般能够在断口处能清楚地显示出裂纹的发生、扩展和最后这前三种疲劳,往往二种或二种以上交错进行或出现。
前三种类型一般在机械运动中经常出现,是疲劳损坏的主要形式。
断裂的三个区域的组成部分。
二.疲劳断裂实例分析:实例.在辽宁某海边风场发现一根双头螺柱断裂。
服役状况:双头螺柱规格:M30×2×475;头标号:1L200444;生产日期:2007年10月;安装日期:2008年6月。
在2010年6月,风机进行检修并重新安装,于2011年1月初发现有一个双头螺栓断裂。
由于螺杆断裂产生有一段时间(几天),发现后再取下螺柱,宏观断口形态出现部分损坏和生锈情况,但从断口处依然可见疲劳引起断裂的一些信息。
(见图一)图一.双头螺柱断口1.断口形状宏观现象:(1)断口的下方左右二侧有凹凸不规则状形态出现,左侧有弧线凸状缺口;右侧的沿表面有锯齿状多个微小缺口存在;最下端弧面形成锋利的刀口状态。
(2)在广大的中间区(扩展区),许多条贝纹状线条清晰可见。
(3)在初始区与广大的贝纹区的断面出现锈迹。
(4)在瞬时断裂区有明显的剪切唇口,而且剪切唇区的组织细腻;并且这个区域的断面光滑明亮,没有出现锈迹(说明瞬断时间不长)。
(5)在断裂螺栓的下方区域,螺杆光滑明亮,磨擦痕迹十分明显,是经过反复摩擦而形成的光滑的弧面。
(见图一、图二)(6)断口处的杆径尺寸变化不明显。
(见图二)图二.断裂的双头螺栓宏观现象分析:(1)裂纹源产生在下侧,下边光滑切口及左右锯齿形、弧形缺口,是产生裂纹的源头。
(2)断裂试样断口中,裂纹的扩展区域,贝纹线清晰,下段(初期)贝纹线间隙距离比较小,在切向应力反复作用下缓慢扩展,上段区域贝纹线间距扩大,反映裂纹扩展速度在加快(见图一)。
(3)在瞬时断裂区域(见图一),形成光滑明亮的剪切唇区,剪切唇宽大明显,显示出延性断口的特征,说明螺栓的强韧性配合比较好。
(4)侧向光滑,螺柱的侧面经过反复的侧向应力,不断来回摆动,和孔壁反复地摩擦,形成光滑弧面。
宏观分析结论:从断口来看,是比较典型的由弯曲产生的疲劳断裂,并且从瞬断区,显示出延性断口的性状。
2.微观分析为了进一步查明疲劳断裂的原因,又进一步做了微观分析,经过电子显微镜的观察,了解了产品不同视野的内部组织的状况(见图三、图四、图五、图六)。
图三.疲劳辉纹+韧窝图四.疲劳辉纹图五.疲劳辉纹+韧窝+准解理图六.韧窝以上电镜图片由机械工业紧固件产品质量检测中心(上海)提供,报告编号:JWT110165。
微观断口失效分析:(1)从扫描电镜进行观察,断口的裂纹扩展区有明显的疲劳辉纹,这是疲劳断裂的微观形态主要的特征,与宏观的贝纹线遥相呼应。
图三、图四、图五的三个电镜照片中的白色线条清晰可见疲劳辉纹。
(2)从扫描电镜图三、图六中的二张照片中,明显地可见多处韧窝的存在;这是扫描电镜照片中,反映产品强度与韧性配合比较恰当的微观显像,与宏观照片中的瞬时断裂区有较大的剪切唇区相互对应,说明双头螺栓的强度与塑性配合比较理想。
(3)电镜图片没有出现解理图象,只有图五中,在部分区域才呈现准解理现象;而且准解理与韧窝,在同一图片中同时交错出现。
也表明了紧固件的脆性现象不明显,强度与韧性配合比较良好。
3.实验分析结论:螺杆表面有车刀切削痕迹,粗糙度比较大,在反复承受切向弯曲应力后,双头螺栓一侧车削痕迹,经过摩擦,磨成光滑弧面;反映出双头螺栓经受了反复的弯曲、碰撞、摩擦,在地接经受来回摆动的过程中,长期的高频次的弯曲疲劳,在表面比较粗糙的地方,首先打破缺口,形成了裂纹源,然后随反复弯曲形成切向应力,裂纹逐步扩展,直至疲劳断裂。
从以上宏观显像图片与微观分析遥相呼应,可以得出结论:,双头螺栓在反复承弯曲中产生疲劳;在弯曲疲劳产生累积效应,至直突发疲劳断裂(见图一的下方)。
三.分析弯曲疲劳断裂产生的原因:疲劳的产生,扩展到断裂,原因多种多样,有设计、材料、制造、热处理、安装等各种原因,为了查明具体的原因,我们将有关检测与现场情况进行分析:1.经过断裂螺栓的硬度分析检测:硬度为HRC 35,符合国家10.9级螺栓的要求。
(上海紧固件研究所测量)2.这批1L200444的双头螺栓,在完成制造后,于2007年11月26日经过SGS 公司检测,抗拉强度,屈服强度全部在10.9级中间值的范围;延伸率,断面收缩率不但全部达到性能要求,而且数值均比较理想,五个样品数值的离散度比较小;各项指标数值,显示出强度与韧性指标配合得比较恰当、比较理想,产品性能达到技术标准。
(见下表一)表一.双头螺栓机械性能检测报告3.各项检测数值的综合分析:(1)SGS公司:检测报告中检测中抗拉强度、屈服强度全部达到10.9级螺栓的技术要求;(2)上海紧固件研究所:检测断裂螺栓的硬度为HRC 35,是10.9级螺栓技术要求的中间数值,与强度数值匹配;(3)检测与显像:延伸率,断面收缩率数值均比较理想,与宏观的瞬时断裂区宽大的剪切唇、微观区域的韧窝互相呼应;说明产品的强韧性配合得比较理想;各项检测的数值与断裂的宏观图像相吻合。
综合分析结论:以上数据说明,无论是出货产品检验,还是断裂后的产品检验,双头螺栓制造质量没有问题;双头螺栓的是属于弯曲疲劳断裂。
4.安装实地考察及拍摄断裂场景:为了更清楚了解双头螺栓断裂现状,我们先后二次,从风机安装现场进行考察与实地调研、了解;对双头螺栓使用(初次安装时间及检修)、安装(方向、位置)、断裂(断口实际状况及具体部位)广泛地进行观察。
在风机现场,三十多台1.5兆瓦的风能发电机运转了三年多中,只出现一根双头螺柱产生断裂的状况。
断裂现象是属于个例;断裂螺柱的一侧无间隙,紧紧地贴在齿轮孔的一端;另一侧却有较大的缝隙,这是由于安装时没有准确的定位,形成螺柱偏离中心位置。
双头螺柱会随风产生弯曲及来回摆动,产生了隐患。
(见图七)。
空隙无间隙(摩擦)图七.双头螺柱断裂现状为了更好地反映断裂的状况,我们从齿轮反面,又拍摄了断裂螺栓的状况。
在紧贴齿轮孔的一侧,双头螺柱与齿轮孔,卡得十分紧密,产生了螺栓的一侧紧贴齿轮孔现象,没有任何缝隙;而另一端同样产生了较大的间隙(见图八)。
在无缝隙的一侧,我们用螺丝批,小刀都无法插入,这说明切向应力是非常巨大。
这样,给拆卸带来极大的难度,拆卸工作耗费了极其大的精力。
在巨大的垂直于轴向应力作用下,在风机不停的运转过程中,双头螺柱紧贴齿轮孔弧面的一侧,经受了对齿孔壁的来回反复地弯曲撞击,经过较长时期撞击和摩擦,螺柱的一侧显得光滑明亮,磨擦痕迹十分明显,完全消除了车削加工痕迹;光滑的侧面,类似磨床加工形成的镜面(见图一)。
风力发电机以每分钟17转速度旋转,每天15小时计算,一天转动1.53万周。
半年期间运转达到2.8×106周,而且应力幅很小,在4mm 间来回的摆动,应力水平相对较低;弯曲疲劳的循环次数远高于510周(按照半年计算,来回的摆动2.8×106周,;按照三年半计算,来回的摆动2.0×107周,);这根双头螺柱的断裂,是长期来承受侧向应力,弯曲疲劳形成的;符合低应力、高循环次数的高周疲劳规律。
是弯曲疲劳产生断裂的典型例子。
图八.双头螺栓断裂照(反面拍摄)5.综合分析判断头标为1L200444的双头螺栓于2007年10月生产,2007年11月经过SGS 的检测,各项指标均达到标准要求,而且数值配合比较理想,(见上表一);风电场于2008年六月进行安装并且发电;经过二年运行,运转的情况正常;在2010年7月进行检修,并重新进行安装,在安装中,由于位置偏离,使双头螺柱一侧紧靠齿轮孔的一侧,又经过半年运转,螺栓承受反复的很大的切向应力,产生弯曲疲劳,在不断地反复弯曲的过程中,产生疲劳累积效应,于2011年一月初发现了一个双头螺栓产生断裂。