当前位置:文档之家› 线性代数总结

线性代数总结

线性代数总结 [转贴 2008-05-04 13:04:49]字号:大中小线性代数总结一、课程特点特点一:知识点比较细碎。

如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。

特点二:知识点间的联系性很强。

这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。

复习线代时,要做到“融会贯通”。

“融会”——设法找到不同知识点之间的内在相通之处;“贯通”——掌握前后知识点之间的顺承关系。

二、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和阶两种类型;主要方法是应用行列式的性质及按行\列展开定理化为上下三角行列式求解。

对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质,及性质(其中为矩阵的特征值)。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、、、的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

三、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

解线性方程组可以看作是出发点和目标。

线性方程组(一般式)还具有两种形式:(Ⅰ)矩阵形式,其中,,(Ⅱ)向量形式,其中,向量就这样被引入了。

1)齐次线性方程组与线性相关、无关的联系齐次线性方程组可以直接看出一定有解,因为当时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。

当齐次线性方程组有唯一零解时,是指等式中的只能全为0才能使等式成立,而当齐次线性方程组有非零解时,存在不全为0的使上式成立;但向量部分中判断向量组是否线性相关\无关的定义也正是由这个等式出发的。

故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。

可以设想线性相关\无关的概念就是为了更好地讨论线性方程组问题而提出的。

2)齐次线性方程组的解与秩和极大无关组的联系同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。

秩的定义是“极大线性无关组中的向量个数”,向量组组成的矩阵有说明向量组的极大线性无关组中有个向量,即线性无关,也即等式只有零解。

所以,经过“秩→ 线性相关\无关→ 线性方程组解的判定”的逻辑链条,由就可以判定齐次方程组只有零解。

当时,的列向量组线性相关,此时齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过个线性无关的解向量(基础解系)线性表示。

3)非齐次线性方程组与线性表示的联系非齐次线性方程组是否有解对应于向量是否可由的列向量组线性表示,即使等式成立的一组数就是非齐次线性方程组的解。

当非齐次线性方程组满足时,它有唯一解。

这一点也正好印证了一个重要定理:“若线性无关,而线性相关,则向量可由向量组线性表示,且表示方法唯一”。

性质1.对于方阵有:方阵可逆óó 的行\列向量组均线性无关óó 可由克莱姆法则判断有唯一解,而仅有零解对于一般矩阵则有:ó 的列向量组线性无关ó 仅有零解,有唯一解(如果有解)性质2.齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关,而非齐次线性方程组是否有解对应于是否可以由的列向量组线性表出。

以上两条性质可视为是将线性相关、行列式、秩、线性方程组几部分知识联系在一起的桥梁。

应记住的一些性质与结论1.向量组线性相关的有关结论:1)向量组线性相关ó向量组中至少存在一个向量可由其余个向量线性表出。

2)向量组线性无关ó向量组中没有一个向量可由其余的向量线性表出。

3)若线性无关,而线性相关,则向量可由向量组线性表示,且表示法唯一。

2.向量组线性表示与等价的有关结论:1)一个线性无关的向量组不可能由一个所含向量个数比它少的向量组线性表示。

2)如果向量组可由向量组线性表示,则有3)等价的向量组具有相同的秩,但不一定有相同个数的向量;4)任何一个向量组都与它的极大线性无关组等价。

3.常见的线性无关组:1)齐次线性方程组的一个基础解系;2)、、这样的单位向量组;3)不同特征值对应的特征向量。

4.关于秩的一些结论:1);2);3);4);5)若有、满足,则;6)若是可逆矩阵则有;7)若可逆则有;8)。

4.线性方程组的解:1)非齐次线性方程组有唯一解则对应齐次方程组仅有零解;2)若有无穷多解则有非零解;3)若有两个不同的解则有非零解;4)若是矩阵而则一定有解,而且当时有唯一解,当时有无穷多解;5)若则没有解或有唯一解。

四、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

本章知识要点如下:1.特征值和特征向量的定义及计算方法就是记牢一系列公式如、、和。

常用到下列性质:若阶矩阵有个特征值,则有;若矩阵有特征值,则、、、、、分别有特征值、、、、、,且对应特征向量等于所对应的特征向量;2.相似矩阵及其性质定义式为,此时满足、、,并且、有相同的特征值。

需要区分矩阵的相似、等价与合同:矩阵与矩阵等价()的定义式是,其中、为可逆矩阵,此时矩阵可通过初等变换化为矩阵,并有;当中的、互逆时就变成了矩阵相似()的定义式,即有;矩阵合同的定义是,其中为可逆矩阵。

由以上定义可看出等价、合同、相似三者之间的关系:若与合同或相似则与必等价,反之不成立;合同与等价之间没有必然联系。

3.矩阵可相似对角化的条件包括两个充要条件和两个充分条件。

充要条件1是阶矩阵有个线性无关的特征向量;充要条件2是的任意重特征根对应有个线性无关的特征向量;充分条件1是有个互不相同的特征值;充分条件2是为实对称矩阵。

4.实对称矩阵及其相似对角化阶实对称矩阵必可正交相似于对角阵,即有正交矩阵使得,而且正交矩阵由对应的个正交的单位特征向量组成。

可以认为讨论矩阵的相似对角化是为了方便求矩阵的幂:直接相乘来求比较困难;但如果有矩阵使得满足(对角矩阵)的话就简单多了,因为此时而对角阵的幂就等于,代入上式即得。

引入特征值和特征向量的概念是为了方便讨论矩阵的相似对角化。

因为,不但判断矩阵的相似对角化时要用到特征值和特征向量,而且中的、也分别是由的特征向量和特征值决定的。

五、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵存在正交矩阵使得可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

本章知识要点如下:1.二次型及其矩阵表示。

2.用正交变换化二次型为标准型。

3.正负定二次型的判断与证明。

标签: 线性代数总结.学习线性代数总结2009年06月14日星期日上午 11:12学习线性代数总结线性代数与数理统计已经学完了,但我认为我们的学习并没有因此而结束。

我们应该总结一下这门课程的学习的方法,并能为我们以后的学习和工作提供方法。

这门课程的学习目标:《线性代数》是物理系等专业的一门重要的基础课,其主要任务是使学生获得线性代数的基本思想方法和行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面的系统知识,它一方面为后继课程(如离散数学、计算方法、等课程)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力,培养学生的抽象思维和逻辑推理能力等重要作用。

同时随着计算机及其应用技术的飞速发展,很多实际问题得以离散化而得到定量的解决。

作为离散化和数值计算理论基础的线性代数,为解决实际问题提供了强有力的数学工具。

我总结了《线性代数》的一些学习方法,可能有的同学会认为这已经为时过晚,但我不这么认为。

从这门课程中,我们学会的不仅仅是线性代数的一些相关知识(行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面的系统知识),更重要的是,从这门课程中我们应该掌握一种很重要的思想——学习如何去使用工具的方法。

这个工具狭隘的讲是线性代数这门数学知识,但从广义地说:这个工具应该是生活中的一切工具(如电脑软件的学习方法、机器的操作方法、科学调查方法等)。

在这门课程给我的感触就是:这门课告诉我们如何去学知识的方法。

我认为:学习任何一门知识的方法是:一、明确我们要学习什么知识或者要掌握哪些方面的技能。

只能我们明白我们自己要学习什么之后,我们才会有动力去学习,在我们的大学里,有些同学不明白学习课本知识有何作用,认为学习与不学习没有什么区别,或者认为学习课本知识没有多大的作用,就干脆不学(当然我在这里没有贬低任何人的意思)。

不过我认为学习好自己的专业的知识,掌握专业技能是每个大学生的天职。

二、知道知识是什么,了解相关知识的概念和定义。

这是学习的一切学习的基础,只有把握这个环节,我们的学习实践活动才能得以开展,知识是人类高度概括、总结的经验,不可能像平常说话那么通俗易懂。

所以我们要想把知识学好,就得在概念上下功夫。

例《线性代数》这门课程中的实二次型,那我们首先得非常清楚的知到,什么叫做实二次型。

否则这一块的知识没有办法开展。

三、要知到我们学的知识可以用到何处,或者能帮我们解决什么问题。

其实这一点和第一点有点重复。

但是对于我们的课本知识非常得有用,因为我们现在所学的课本知识。

说句实在话,我们确实不知到能为我们生活中能解决什么问题,但如果我们知到它能用到何处,相信将来一定会有用。

有一句话说得好,书到用时方恨少,说得是这个道理。

总之,我们现在要为以后遇到问题而积累解决问题的方法,我们现在是在为以后的人生在打基础。

四、学习相关概念后,要学会如何去操作。

像《线性代数》这门课程,在这一点就体现得很突出。

如在我们学习正交矩阵这个概念后,我们得要学会如何去求正交矩阵;再如,当我们认识了矩阵的对角化定义之后,我们得掌握如何去将一个矩阵对角化。

其实,就是学会如何去操作,这是我们掌握数学工具的使用方法的重要途径,所以这部分的工作是我们的学习中心和重点。

相关主题