1、输入传感器为接近开关时,只要接近开关的输出驱动力足够,漏型输入的PLC输入端就可以直接与NPN集电极开路型接近开关的输出进行连接。
但是,当采用PNP集电极开路型接近开关时,由于接近开关内部输出端与0V间的电阻很大,无法提供电耦合器件所需要的驱动电流,因此需要增加“下拉电阻”。
如图。
增加下拉电阻后应注意,此时的PLC内部输入信号与接近开关发信状态相反,即接近开关发信时,“下拉电阻”上端为24V,光电耦合器件无电流,内部信号为“0”;未发信时,PLC内部DC24V与0V之间,通过光电耦合器件、限流电阻、“下拉电阻”经公共端COM构成电流回路,输入为“1”。
下拉电阻的阻值主要决定于PLC输入光电耦合器件的驱动电流、PLC内部输入电路的限流电阻阻值。
通常情况下,其值为1.5—2KΩ,计算公式如下:第一种公式:R≤[(Ve-0.7)/Ii]-Ri式中:R——下拉电阻(KΩ)Ve——输入电源电压(V)Ii——最小输入驱动电流(mA)Ri——PLC内部输入限流电阻(KΩ)公式中取发光二极管的导通电压为0.7V。
第二种公式:下拉电阻≤[输入限流电阻/(最小ON电压/24V)]-输入限流电阻2、输入传感器为接近开关时,只要接近开关的输出驱动力足够,源型输入的PLC输入端就可以直接与PNP集电极开路型接近开关的输出进行连接。
相反,当采用NPN集电极开路型接近开关时,由于接近开关内部输出端与24V间的电阻很大,无法提供电耦合器件所需要的驱动电流,因此需要增加“上拉电阻”。
如图。
增加下拉电阻后应注意,此时的PLC内部输入信号与接近开关发信状态相反,即接近开关发信时,“上拉电阻”上端为0V,光电耦合器件无电流,内部信号为“0”;未发信时,PLC内部DC24V与0V之间,通过光电耦合器件、限流电阻、“上拉电阻”经公共端COM构成电流回路,输入为“1”。
上拉电阻的阻值主要决定于PLC输入光电耦合器件的驱动电流、PLC内部输入电路的限流电阻阻值。
通常情况下,其值为1.5—2KΩ,其计算公式与下拉电阻计算公式相同。
先要搞清楚PNP、NPN 表示的意思是什么。
P表示正、N表示负。
PNP表示平时为高电位,信号到来时信号为负。
NPN表示平时为低电位,信号到来时信号为高电位输出.接近开关和光电开关只是检测电路不同输出相同。
至于PLC接线,一般用NPN的较多。
但多数的日本的PLC有日本型、世界型、和通用型。
进入中国的多数为世界型和通用型。
可直接用NPN型。
接近开关和光电开关的电源正端接电源正、负接公共端、输出接PLC的输入端。
注意这里PLC的输入类型是分漏式和源式的,前者指的是正信号输入(可直接用PNP),后者指的是负信号输入(可直接用NPN),否则必须用继电器转换后输入。
传感器的型式不一而足,不过一般用得最多的是两线跟三线的,两线的跟负载串联。
三线的多为开集极输出,三根线分别为正负电源和输出晶体管的集电极。
传感器的NPN和PNP是根据输出晶体管的型号来的。
NPN的负载是接在正电源与集电极之间,而PNP是接在集电极与负电源之间的。
要用万用表来判断传感器的型号,需要先给它一个负载,再根据它的输出电压来判断。
源型、漏型是指直流输入/输出PLC而言,针对的是输入点/输出点的COM端,当公共点接入负电位时,就是源型接线;接入正电位时,就是漏型接线。
或者换种说法源型是高电平有效,漏型是低电平有效。
源型输入是指输入点接入直流正极有效漏型输入是指输入点接入直流负极有效源型输出是指输出的是直流正极漏型输出是指输出的是直流负极。
源型与漏型的选择决定了使用那种传感器,他决定了COM端口的电压为正或是为负Pnp npn果到现在还不能搞清的话,可以使用OMRON的PLC。
NPN和PNP都可以接OMRON PLC。
我对NPN和PNP的认识PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。
但输出信号(提供:信号转发器产品)是截然相反的,即高电平和低电平。
PNP输出是低电平0,NPN输出的是高电平1。
PNP与NPN型传感器(开关型)分为六类:1、NPN-NO(常开型)2、NPN-NC(常闭型)3、NPN-NC+NO(常开、常闭共有型)4、PNP-NO(常开型)5、PNP-NC(常闭型)6、PNP-NC+NO(常开、常闭共有型)PNP与NPN型传感器一般有三条引出线,即电源(提供产品:报警主机电源)线VCC、0V线,out信号输出线。
1、NPN类NPN是指当有信号触发时,信号输出线out和电源线VCC连接,相当于输出高电平的电源线。
对于NPN-NO型,在没有信号触发时,输出线是悬空的,就是VCC电源线和out线断开。
有信号触发时,发出与VCC电源线相同的电压,也就是out线和电源线VCC连接,输出高电平VCC。
对于NPN-NC型,在没有信号触发时,发出与VCC电源线相同的电压,也就是out线和电源线VCC 连接,输出高电平VCC。
当有信号触发后,输出线是悬空的,就是VCC电源线和out线断开。
对于NPN-NC+NO型,其实就是多出一个输出线OUT,根据需要取舍。
2、PNP类PNP是指当有信号触发时,信号输出线out和0v线连接,相当于输出低电平,ov。
对于PNP-NO型,在没有信号触发时,输出线是悬空的,就是0v线和out线断开。
有信号触发时,发出与OV相同的电压,也就是out线和0V线连接,输出输出低电平OV。
对于PNP-NC型,在没有信号触发时,发出与0V线相同的电压,也就是out线和0V线连接,输出低电平0V。
当有信号触发后,输出线是悬空的,就是0V线和当输出电流适合时PNP、NPN可用于任何PLC其实无论对于PNP或NPN输出的传感器,只要输出电流能得到PLC的要求,都可以用于任何型号的PLC机,这在于程序员如何编程而已,下面以FX-1S系列PLC来举个例子1、FX1S要求为低电平有效。
当使用N型输出传感器时,可将程序检测设为上升脉冲触发。
当传感器到位时,即可正常检测并实现相应指令。
2、当选用P型时,即有输出时为高电平,此时,只要传感器输出电流能达到PLC机要求的4MA,只需将程序检测改为下升脉冲触发,当传感器输出信号时,相当于0V——24V突变,即为一个下降脉冲,此时PLC也可正常检测并实现相应指令。
所实,实际上在选用传感器时,我们应该考虑的是PLC输入端子的输入电流是多少。
(西门子的一般为2MA左右,而三菱FX系列为7MA左右,只要传感器拉电流或灌电流适合要求,无论是P型或N型传感器都可使用。
同意说法!注意输入点耐压值,有10-20MA的电流点亮内部光藕就行。
三菱FX是内部电路板上光藕共阳接法,所以只能用NPN型西门子或台达等PLC的COM端是悬空的可以自行选择共阳还是共阴接法,即根据选择决定类型,共阳接法只能用NPN,共阴接法只能用PNP,但是PLC输入有多组COM端的,可以每组有共阳,共阴的区别来通吃。
光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
一、传感器的定义信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。
微处理器现在已经在测量和控制系统中得到了广泛的应用。
随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。
传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。
最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。
国际电工委员会(IEC:InternationalElectrotechnicalCommittee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。
按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。
传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。
将所感知的某种物理、化学、生物等信息转换成便于检测、处理的信息并具有独立功能的器件或组合件。
通常由敏感元件和处理电路两部分组成。
前者执行传感功能,后者对敏感元件输出的信息进行放大、传输等处理。
传感器根据不同功能可分为温度(推荐:温度报警器厂家)传感器、光传感器、压力传感器、磁传感器、气体传感器、湿度传感器、射线传感器等。
传感器应用广泛,对实现生产自动化、保护环境、节省能源、防灾报警、医疗保健、交通运输等方面有极其重要的作用。
除进一步提高灵敏度、分辨率、稳定性、可靠性,发展高灵敏度、高精度、高重复性、高响应速率、长寿命、耐恶劣环境等性能外,集成化(与放大器、模数转换器等集成在一起)、多功能化(同时检测几个物理量)和智能化(与微型计算机结合随时给出误差并随时修正)将是传感器发展的重要方向。
传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。
被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。
大多数传感器是以物理原理为基础运作的。
化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
常见传感器的应用领域和工作原理列于表1.1。
按照其用途,传感器可分类为:压力敏和力敏传感器 位置传感器液面传感器 能耗传感器速度传感器 热敏传感器加速度传感器 射线辐射传感器振动传感器 湿敏传感器磁敏传感器 气敏传感器真空度传感器 生物传感器等。
以其输出信号为标准可将传感器分为:模拟传感器——将被测量的非电学量转换成模拟电信号。
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。
它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。
从所应用的材料观点出发可将传感器分成下列几类:(1)按照其所用材料的类别分金属 聚合物 陶瓷 混合物(2)按材料的物理性质分 导体 绝缘体 半导体 磁性材料(3)按材料的晶体结构分单晶 多晶 非晶材料与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。