当前位置:
文档之家› 压力容器的设计_压力容器零部件(支座及开孔).
压力容器的设计_压力容器零部件(支座及开孔).
适用范围和结构:
支承式支座分A型和B型。
形 式
A B
支座 适用的公称直径 号 (mm)
1~6 1~8 DN800~3000 DN800~4000
结构特征
钢板焊制, 带垫板 钢管焊制, 带垫板
㈢ 裙式支座
塔设备最常用裙式支座。 目前还没有标准。 各部分尺寸均需通过计算或实 践经验确定。 有关裙式支座的结构及其设计 方法详见第十七章。
(二).补强形式:
• • • • 1.内加强齐平接管 2.外加强齐平接管 3.对称加强凸出接管 4.密集补强
(三). 补强结构:
(1)补强圈结构
●材质厚度一般与壳体相同;
●补强圈要与壳体、接管很好地焊 接,以同时受力。
●补强板上有一个M10小孔,用以 检查焊缝缺陷;名曰泄漏信号孔。
(2)加强元件结构
㈡ 圈座
采用圈座的情况: 对于大直径薄壁容器和真空容器, 因其自身重量可能造成严重挠曲; 多于两个支承的长容器。 除常温常压下操作的容器外,至少应 有一个圈座是滑动支承的。
㈢ 腿式支 座
简称支腿 连接处造成严重的局部应力, 只适用于小型设备 (DN≤1600、L≤5m)。 腿式支座的结构型式、系列参 数等参见标准JB/T 4714-92 《腿式支座》。
h1 dSnt
(C=C1+C2)
或实际外伸高度的较小 值;
h 2 dSnt 或实际内伸高度的较小 值;
等面积补强,纵截面上的投影面积要满足下式: A1+A2+A3≥A A1—壳体的贡献(有效壁厚减去计算壁厚部分); A2—接管的贡献(有效壁厚减去计算壁厚部分); A3—焊缝金属截面积; A—壳体上需要补强的截面积。(表6-20 P179)
开孔处出现应力集中,应力集中系数为:
K=σ实际/σ膜
其大小为多少?见平板开孔试验测试:
实测结果:K≈3 即应力集中点的实际 应力大约为膜应力的 3倍。
开孔的形状: 应力集中和开孔形状有关, 圆孔的应力集中程度最低。
二.开孔补强原则与补强结构
(一)开孔补强的设计原则 1.等面积补强原则
该方法认为在有效的补强范围内,壳体处本身 承受内压所需截面积外的多余截面积A不应少于开孔 所减少的有效截面积 。 即 这种以通过开孔中心的纵截面上的投影面积来 衡量的补强设计方法,具有使开孔后截面的平均应 力不致升高的含义。在一般情况下可以满足开孔补 强的需要,方法简便,我国的容器标准采用的主要 是这种方法。
鞍座分为轻型(A)和重型(B)(BⅠ~BⅤ)。 固定式——F型; 活动式——S型。 标准号:JB/T4712-92 . 鞍座标记: JB/T4712-92 鞍座 [型号][公称直径]-[F或S] 例如:DN2600的轻型鞍座标记为 JB/T4712-92 鞍座A2600-F JB/T4712-92 鞍座A2600-S
(3)整体补强结构
若须补强的接管较多, 可采取增加壳体壁厚 的办法,也称为整体 补强。
(四).等面积补强的设计方法
1. 开孔有效补强范围及补强面积的计算 等面积补强——补强的金属量等于或大于开孔所 削弱的金属量。 图上看,应该考虑的截面是强度削弱较大的截面 ——轴(纵)向截面的面积:
B=2d d=接管内径+2C
2.极限分析补强设计准则
由于开孔只造成壳体的局部强度削弱,如 果在某一压力载荷下容器开孔处的某一区域其 整个截面进入塑性状态,以至发生塑性流动, 此时的载荷便为极限载荷。利用塑性力学方法 对带有整体补强的开孔补强结构求解出塑性失 效的极限载荷。以极限载荷为依据来进行补强 结构设计,即以大量的计算可以定出补强结构 的尺寸要求,使其具有相同的应力集中系数。。
第三节 容器的开孔补强
一. 容器开孔应力集中现象及其原因
容器为什么要开孔? 工艺、安装、检修的要求。 开孔后,为什么要补强? 削弱器壁的强度,出现不连续, 形成高应力集中区。
峰值应力通常较高,达到甚至超 过材料屈服极限。 局部应力较大,加之材质和制造 缺陷等, 为降低峰值应力,需要对结构开 孔部位进行补强,以保证容器 安全运行。
(二)耳式支座选用的方法:
(1)估算设备总重,算每个支座 (按2个计算)的负荷Q值; (2)确定支座型式,从表4-13或表 4-15按允许负荷Q允大于实际负荷Q, 选支座。 小型设备耳式支座,可支承在管子 或型钢制的立柱上。 大型设备的支座往往搁在钢梁或混 凝土制的基础上。
㈡ 支承式支座
用钢管、角钢、 槽钢制作,或 用数块钢板焊 成, 型式、结构、 尺寸及材料 JB/T 4724-92 《支承式支 座》。
第二节 容器支座
概述:
容器支座,支承容器重量、固定容器 位置并使容器在操作中保持稳定。 结构型式由容器自身的型式决定,分 卧式容器支座 立式容器支座 球形容器支座
一、立式容器支座
立式容器的支座主要有 耳式支座 支承式支座 裙式支座 中、小型直立容器常采用前二种, 高大的塔设备则广泛采用裙式支座。
(3).鞍座的位置——A的确定:
A≤Do/4,且不大于0.2L。最大不大于0.25L。
L——封头赤道圆(切点)间的距离。 A——赤道圆至支座中心线间的距离。
思考:在施工图上,L,A标注在赤道圆上,可否?
鞍座包角120°或150°,安放稳定。 高度200、300、400和500mm。 宽度b根据容,筋板和支脚板。 广泛用在反应釜及 立式换热器等直立设备上。 简单、轻便,但局部应力较大。 当设备较大或器壁较薄应加垫板。 不锈钢制设备,用碳钢作支座,防止合 金元素流失,也需加一个不锈钢垫板。
已标准化JB/T 4725-92 《耳式支座》。 该标准分A型(短臂)和B型(长臂)(有保温 层或直接放在楼板上) 每类又分带垫板与不带垫板两种结构
二、 卧式容器支座
种类:
鞍式支座
应用最广泛的卧式容器支座。 已有标准JB/T4712-92 《鞍式支座》, 根据容器公称直径和重量选用。 由横向筋板、若干轴向筋板和底板焊 接而成。在与设备连接处,有带加 强垫板和不带加强垫板两种结构。
材质:垫板—与筒体相同,其它---Q235-A.F 。
(2)鞍座标准及其标记