当前位置:文档之家› 红外拉曼光谱复习题

红外拉曼光谱复习题

红外、拉曼光谱习题三.问答题1. 分子的每一个振动自由度是否都能产生一个红外吸收?为什么?答:(1)产生条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化。

并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。

(2)产生红外吸收的条件:1)红外辐射的能量应与振动能级差相匹配。

即 v E E ∆=光; 2)分子在振动过程中偶极矩的变化必须不等于零。

故只有那些可以产生瞬间偶极距变化的振动才能产生红外吸收。

2. 如何用红外光谱区别下列各对化合物? a P-CH 3-Ph-COOH 和Ph-COOCH 3 b 苯酚和环己醇答:a 、在红外谱图中P-CH 3-Ph-COOH 有如下特征峰:vOH 以3000cm-1为中心 有一宽而散的峰。

而Ph-COOCH3没有。

b 、苯酚有苯环的特征峰:即苯环的骨架振动在1625~1450cm-1之间,有几个 吸收峰,而环己醇没有。

3. 下列振动中哪些不会产生红外吸收峰?(1)CO 的对称伸缩(2)CH 3CN 中C —C 键的对称伸缩 (3)乙烯中的下列四种振动(A )(B )(C ) (D )答:(1)0≠∆μ,有红外吸收峰(2)0≠∆μ,有红外吸收峰(3)只有D无偶极矩变化,无红外吸收峰4、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起?HO—CH = O CH3—CO2CH2C≡CH (A)(B)答:(A)HO C-H :v OH3700~3200cm-1δOH1300~1165cm-1v CH(O)2820~2720cm-1双峰v C=O1740~1720cm-1苯骨架振动:1650~1450 cm-1苯对位取代:860~800 cm-1v=CH3100~3000cm-1(B)CH3—COCH2C≡CH :v C=O1750~1735cm-1v C—O—C1300~1000cm-1v C≡C2300~2100cm-1v≡CH3300~3200cm-1v as C—H2962±10cm-1、2926±5cm-1v s C—H2872±10cm-1、2853±10cm-1δas C—H1450±20cm-1、1465±20cm-1δs C—H1380~1370cm-15、红外光谱(图10-28)表示分子式为C8H9O2N的一种化合物,其结构与下列结构式哪一个符合?O(A ) (B ) (C )(D ) (E )答:(A )结构含—OH ,而图中无v OH 峰,排除(C )结构中含—CNH 2,伯酰胺,而图中无1650、1640cm -1的肩峰,排除。

(D )与(E )结构中有-COOH ,而图中无3000cm -1大坡峰,排除。

(B )图中3600cm -1,3300cm -1为v Ar —N 1680cm -1,为v C=O1600~1400cm -1为苯骨架振动 1300~1000cm -1表示有C-O-C 所以应为(B )。

6、芳香化合物C 7H 8O ,红外吸收峰为3380、3040、2940、1460、1010、690和740cm -1,试推导结构并确定各峰归属。

解:Ω= 7 + 1 – 8/2 = 4 3380cm -1表明有-OH 3040cm -1表明为不饱和HNHCOCH 3 OHNH 2 CO 2CH 3COCH 2 OCH 3NHCH 3 CO 2HCH 2NH 2 CO 2HO690与740cm -1表明苯单取代 得3380cm -1为v OH ; 2940cm -1为CH 2的v C-H ; 3040cm -1为v =C-H ; 1460cm -1为苯骨架振动; 1010cm -1,为v C-O ;690与740cm -1为苯单取代δC-H7、化合物C 4H 5N ,红外吸收峰:3080, 2960, 2260, 1647, 990和935cm -1,其中1865为弱带,推导结构。

解:Ω= 4 + 1 + )251(= 3 CH 2 = CHCH 2C≡N3080cm -1为v =C-H ;2960cm -1、2260cm -1为v C-H ; 1647 cm -1为v C≡N ; 1418cm -1为δC-H ;990cm -1和935cm -1为烯烃—取代δ=C-H7.一个化合物的结构不是A 就是B,其部分光谱图如下,试确定其结构。

(A) (B)CH 2OH答:由图可得,在2300cm-1左右的峰为C≡N产生的。

而图在1700cm-1左右也没有羰基的振动峰。

故可排除(B)而为(A)8.下图是分子式为C8H8O化合物的红外光谱图,bp=202℃,试推测其结构。

答:其结构为9.请根据下面的红外光谱图试推测化合物C7H5NO3(mp106℃)的结构式。

答:其结构为10.分子式为C8H16的未知物,其红外光谱如图,试推测结构。

答:其结构为11. 红外光区的划分?答:红外光按波长不同划分为三个区域:近红外区域(1-2.5微米)、中红外区域(2.5-25微米)、远红外区(25-1000微米)。

12.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低?答:(1)振动光谱有红外吸收光谱和激光拉曼光谱两种类型。

(2)价键或基团的振动有伸缩振动和弯曲振动。

其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面内弯曲振动(剪式振动、面内摇摆振动)和面外弯曲振动(扭曲振动、面外摇摆振动)。

1)伸缩振动:指键合原子沿键轴方向振动,这是键的长度因原子的伸缩运动发生变化。

2)弯曲振动:指原子离开键轴振动,而产生键角大小的变化。

(3)伸缩振动频率较高,弯曲振动频率较低。

(键长的改变比键角的改变需要更大的能量)非对称伸缩振动的频率高于对称伸缩振动。

13.说明红外光谱产生的机理与条件?答:(1)产生机理:当用红外光波长范围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,若振动频率恰与红外光波段的某一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长范围内变弱,在另一些范围内则较强,用光波波长(或波数)对光的透过率作图,便可得到红外光谱(2)产生条件:1)辐射应具有能满足物质产生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的某频率相等。

2)辐射与物质间有相互偶合作用,即振动中要有偶极矩变化14.红外光谱图的表示法?答:红外吸收光谱图:不同频率IR光辐射于物质上,导致不同透射比,以纵座标为透过率,横座标为频率,形成该物质透过率随频率的变化曲线,即红外吸收光谱图。

横坐标:波数cm-1或者波长μm ,纵坐标:透过率%或者吸光度。

15.红外光谱图的四大特征(定性参数)是什么?如何进行基团的定性分析?如何进行物相的定性分析?答:(1)红外光谱图的四大特征(定性参数)是:谱带的数目、谱带的位置、谱带的强度、谱带的形状。

(2)进行基团的定性分析时,首先,观察特征频率区,根据基团的伸缩振动来判断官能团。

(3)进行物相的定性分析:1)对于已知物:a、观察特征频率区,判断官能团,以确定所属化合物的类型b、观察指纹频率区,进一步确定基团的结合方式c、对照标准谱图进行比对,若被测物质的与已知物的谱图峰位置和相对强度完全一致,可确认为一种物质。

2)对于未知物:A、做好准备工作。

了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法分离B、按照鉴定已知化合物的方法进行16.何谓拉曼效应?说明拉曼光谱产生的机理与条件?答:(1)光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。

(2)产生的机理:由于光子与试样分子发生非弹性碰撞,使得分子的极化率发生变化,最终使散射光频率和入射光频率有差异。

17.请叙述CS的拉曼和红外活性的振动模式?2对称伸缩振动时只有拉曼活性,反对称伸缩振动和弯曲振动时只有红外答:CS2活性。

18.比较拉曼光谱与红外光谱。

答:(1)相同点:两光谱都属于分子振动光谱(2)不同点:1)两光谱的光源不同:拉曼光谱用单色光很强的激光辐射,频率在可见光范围;红外光谱用的是红外光辐射源,波长大于1000nm的多色光2)产生机理不同:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,红外光谱是分子对红外光的吸收,强度由分子偶极矩决定,其适用于研究不同原子的极性键的振动。

3)光谱范围不同:红外光谱的范围是4000-400cm-1,拉曼光谱的范围是4000-40cm-1.拉曼光谱的范围较红外光谱范围宽。

4)制样、操作的不同:a、在拉曼光谱分析中水可以作溶剂,但是红外光谱分析中水不能作为溶剂。

b、拉曼光谱分析中样品可盛于玻璃瓶,毛细管等容器中直接测定,但红外光谱分析中不能用玻璃容器测定。

c、拉曼光谱分析中固体样品可直接测定,但红外光谱分析中固体样品需要研磨制成KBr压片。

19.红外与拉曼活性判断规律?指出下列分子的振动方式哪些具有红外活性、哪些具有拉曼活性。

为什么?(1)O2、H2(2)H2O的对称伸缩振动、反对称伸缩振动和弯曲振动。

答:(一)红外与拉曼活性判断规律:产生偶极矩变化有红外活性,反之没有。

分子极化率变化有拉曼活性,反之没有,凡有对称中心的分子,其分子振动仅对红外和拉曼之一有活性;凡无对称中心的分子,大多数分子振动对红外和拉曼都是有活性的;少数分子的振动即红外非活性又拉曼非活性。

(二)(1)O2、H2都有两个原子,且为线性分子,所以其振动形式有3n-5=3*2-5=1中,即对称伸缩振动,它们分子的振动是拉曼活性,红外非活性,因为它们是对称分子,其振动中并没有偶极矩的变化,有极化率的变化。

(2)H2O分子中有3个原子,且为非线性分子,所以其振动形式有3n-6=3*3-6=3种,即对称伸缩振动、反对称伸缩振动和弯曲振动三种振动都对红外和拉曼都具有活性,因为水分子为无对称中心的分子,其振动同时使偶极矩和极化率产生变化。

20、比较红外与拉曼光谱分析的特点。

什么样的分子的振动具有红外或拉曼活性?答:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,与红外光谱分析相比,拉曼光谱的特点:1)光谱范围较红外光谱宽,为40-4000cm-1;2)水可以作溶剂;3)样品可盛于玻璃瓶,毛细管等容器中直接测定;4)固体样品可直接测定;5)激光方向性强,光束发散小(1-2μ)可测定一定深度的微区样品;如测包裹体中的物质;6)合频、倍频谐波少甚至无;图谱简单。

21、何为有机基团的IR特征吸收峰?影响红外吸收峰发生移动的因素有哪些?答:(1)总结大量红外光谱资料后,发现具有同一类型化学键或官能团的不同化合物,其红外吸收频率总是出现在一定的波数范围内,我们把这种能代表某基团,并有较高强度的吸收峰,称为该基团的特征吸收峰。

相关主题