常用射频指标测试大纲通信对抗2015/10/30Ver. 1.0目录目录11.1dB压缩点(P1dB) (1)1.1基本概念 (1)1.2测量方法 (1)2.三阶交调(IP3) (2)2.1基本概念 (2)2.2测量方法 (3)3.三阶互调(IM3) (4)3.1基本概念 (4)3.2测量方法 (5)3.2.1直接测量 (5)3.2.2间接法 (5)4.噪声系数(NF) (5)4.1基本概念 (5)4.2测量方法 (6)4.2.1使用噪声系数测试仪 (6)4.2.2增益法 (6)4.2.3Y因数法 (8)4.2.4测量方法小结 (10)5.灵敏度 (10)5.1基本概念 (10)5.2测量方法 (11)5.2.1间接法-噪声系数法测量 (11)5.2.2直接法-临界灵敏度测量 (11)6.镜频抑制 (11)6.1基本概念 (11)6.2测量方法 (12)7.相位噪声 (13)7.1基本概念 (13)7.2测量方法 (13)7.2.1基于频谱仪的相位噪声测试方法 (13)1.1dB压缩点(P1dB)1.1基本概念射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。
随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。
当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。
通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。
典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。
1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。
图 1 输出功率随输入功率的变化曲线1.2测量方法频谱仪直接测量。
1,DUT的输入端连接信号源,输出端连接频谱仪;2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其差值,保证DUT由线性区逐步进入非线性区。
在过渡区适当减小功率步进;3,当增益G减小1时所对应的点即为1dB压缩点。
2.三阶交调(IP3)2.1基本概念当两个正弦信号经过射频电路(系统)时,此时由于射频电路(系统)的非线性作用,会输出包括多种频率的分量,其中以三阶交调分量的功率电平最大,它是非线性中的三次项产生的。
假设两基频信号的频率分别是F1 和F2,那么,三阶交调分量的频率为2F1-F2 和2F2-F1。
图2是输入信号和输出信号的频谱图。
图 2 输入、输出频谱图当输入功率逐渐增加到IIP3 时,基频与三阶交调增益曲线相交,对应的输出功率为OIP3。
IIP3 与OIP3 分别被定义为输入三阶交调截取点(InputThird-order Intercept Point)和输出三阶交调截取点(Output Third-order Intercept Point)。
三阶交调截取点(IP3)是表示线性度或失真性能的重要参数,IP3 越高表示线性度越好和更少的失真。
图3中A线是基频(有用的)信号输出功率随输入功率变化的曲线,B线是三阶失真输出功率随输入功率变化的曲线,B线的斜率是A 线的斜率的 3 倍(以dB 为单位),理论上会与A相交,这个交点就是三阶截取点。
假定射频电路(系统)的增益为G,它表示图3中A线(基频)的斜率,3G则表示图3中B线(三阶交调)的斜率,即在线性范围内,三阶交调输出功率是一阶交调输出功率的3倍。
故两曲线的方程分别为:OIP3-a=G(IIP3-Pi)及OIP3-b=3G(IIP3-Pi),则有OIP3=a+(a-b)/2=(3a-b)/2=1.5(a-b)+b及OIP3=IIP3+G图 3 功率变化曲线2.2测量方法进行此测量时,重要的是两测试信号源间有充分的隔离,从而防止产生更多的互调产物。
可能需要使用隔离器、固定衰减器、隔离放大器或高隔离威尔金森功率合路器,可能还需要低通滤波器来衰减信号源的2次谐波。
图4为IP3测试框图,在信号源和频谱分析仪之间,附加了一些测试设备。
附加在射频信号源与合成器之间的隔离器用以改善并隔离射频信号源之间的交调或混合,低通滤波器用以减少射频信号源的谐波成分。
附加在被测放大器与频谱分析之间的隔离器用以改善与频谱分析仪的阻抗匹配,低通滤波器用以减少由被测放大器产生的谐波分量。
为了避免频谱分析仪产生非线性失真,输出到频谱分析仪的信号功率不能太高,对此要求射频信号源的输出功率要小,由图3可以看出,三阶交调输出功率(图3中的b点)比一阶交调输出功率(图3中的a点)要小很多倍,那么对测量的频谱分析仪的要求需要有高的动态范围。
综合以上的考虑后,要精确的测量IP3需要谨慎遵守几个步骤:1,按照图4测试框连接好设备;2,设置射频信号源F1的频率和输出功率;3,设置射频信号源F2的频率和输出功率;4,设置频谱分析仪衰减电平、参考电平、中心频率、范围(SPAN)、分辨率等参数;5,提供符合被测件的工作条件(电压,电流);6,调整射频信号源的输出功率并在频谱分析仪测得F1或F2的输出功率,此为a点的值并记录(比如-10dBm);7,调整频谱分析仪测得2F1-F2或2F2-F1的输出功率并记录,此为b点的值;8,用公式计算出OIP3和IIP3。
图 4 IP3测试框图3.三阶互调(IM3)3.1基本概念三阶互调是指当两个基频信号在一个线性系统中,由于非线性因素存在使一个基频信号的二次谐波与另一个基频信号产生差拍(混频)后所产生的寄生信号。
比如F1 的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。
由于一个信号是二次谐波(二阶信号),另一个信号是基频信号(一阶信号),他们俩的合称为三阶互调信号。
又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。
产生这个信号的过程称为三阶互调失真。
由于 F2,F1 信号一般比较接近,所以 2F1-F2,2F2-F1 会干扰到原来的基频信号 F1,F2(见图 2)。
这就是三阶互调干扰。
既然会出现三阶,当然也有更高阶的互调,这些信号也干扰原来的基带信号,因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。
不管是有源还是无源器件,如射频电路(系统)、混频器和滤波器等都会产生三次互调产物。
3.2 测量方法3.2.1 直接测量用频谱分析仪直接测量DUT 输出端的基频信号输出功率Pout (dBm)和三阶互调输出功率 P’(dBm)。
则三阶互调抑制度由(5)计算。
3.2.2 间接法用三阶截取点来定义三阶互调抑制度,三阶截取点OIP3 (dBm)、基频信号输出功率 Pout (dBm)和三阶互调IM3 (dBc)的关系如下:IM3=2(Pout-OIP3)4. 噪声系数(NF )4.1 基本概念在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。
噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为:两者简单的关系为:NF = 10 * log10 (F)IM3(dBc)=Pout (dBm)-P(dBm)4.2测量方法4.2.1使用噪声系数测试仪图 5 噪声系数测试仪连接框图噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。
使用噪声系数分析仪测量待测器件的输出。
由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。
对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图5所示。
当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。
使用噪声系数测试仪是测量噪声系数的最直接方法。
在大多数情况下也是最准确地。
工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。
分析仪具有频率限制。
例如,Agilent N8973A可工作频率为10MHz至3GHz。
当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。
这种方法需要非常昂贵的设备。
4.2.2增益法前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。
这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。
其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:在这个定义中,噪声由两个因素产生:第一个是到达射频系统输入的干扰,与需要的有用信号不同;第二个是由于射频系统载波的随机扰动(LNA,混频器和接收机等)。
第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为:P NA = k*T*ΔF这里的k = 波尔兹曼常量(1.38 * 10-23焦耳/ΔK)T = 温度,单位为开尔文ΔF = 噪声带宽(Hz)在室温(290ΔK)时,噪声功率谱密度P NAD = -174dBm/Hz。
因而我们有以下的公式:NF = P NOUT - (-174dBm/Hz + 20 * log10 (BW) + G)在公式中,P NOUT是已测的总共输出噪声功率;-174dBm/Hz是290°K时环境噪声的功率谱密度;BW是感兴趣的频率带宽;G是系统的增益;NF是DUT的噪声系数。
公式中的每个变量均为对数。
为简化公式,我们可以直接测量输出噪声功率谱密度(dBm/Hz),这时公式变为:NF = P NOUTD + 174dBm/Hz – G为了使用增益法测量噪声系数,DUT的增益需要预先确定的。
DUT的输入需要端接特性阻抗(射频应用为50Ω,视频/电缆应用为75Ω)。
输出噪声功率谱密度可使用频谱分析仪测量。
图 6 为增益法连接框图。
作为一个例子,我们测量MAX2700噪声系数。
在指定的LNA增益设置和V AGC下测量得到的增益为80dB。
接着,如图6连接仪器,射频输入用50Ω负载端接。
在频谱仪上读出输出噪声功率谱密度为-90dBm/Hz。
为获得稳定和准确的噪声密度读数,选择最优的RBW (解析带宽)与VBW (视频带宽)为RBW/VBW = 0.3。
计算得到的NF为:-90dBm/Hz + 174dBm/Hz - 80dB = 4.0dB只要频谱分析仪允许,增益法可适用于任何频率范围内。