当前位置:文档之家› 液体动压润滑径向轴承油膜压力和特性曲线

液体动压润滑径向轴承油膜压力和特性曲线

精品资料推荐液体动压润滑径向轴承油膜压力和特性曲线(二) HZS —I型试验台一.实验目的1. 观察滑动轴承液体动压油膜形成过程。

2. 掌握油膜压力、摩擦系数的测量方法。

3. 按油压分布曲线求轴承油膜的承载能力。

二.实验要求1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。

2. 绘制摩擦系f与轴承特性的关系曲线。

3. 绘制轴向油膜压力分布曲线三•液体动压润滑径向滑动轴承的工作原理当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。

当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。

这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。

因此这种轴承摩擦小,寿命长,具有一定吸震能力。

液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。

滑动轴承的摩擦系数f是重要的设计参数之一,它的大小与润滑油的粘度(Pas)、轴的转速n (r/min)和轴承压力p (MPi)有关,令nP (7)式中:一轴承特性数观察滑动轴承形成液体动压润滑的过程,摩擦系数f随轴承特性数的变化如图8-2所示。

图中相应于f值最低点的轴承特性数c称为临界特性数,且c以右为液体摩擦润滑区,c以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。

因此f值随减小而急剧增加。

不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f—曲线不同,c也随之不同。

四.HZS-1型试验台结构和工作原理1•传动装置如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V带5 带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。

精品资料推荐(9)21 —轴2—试验轴承3—滚动轴承 4 —变速箱5 — V 带传动6—调速电机图8-7传动装置示意图2.加载装置该试验台采用静压加载装置,如图图8-8所示。

图中4为静压加载板,它位于被试轴承上部,并固定于箱座上,当输入压力油至加载板的油腔时,载荷即施加在轴承上, 轴承载荷为:F = 9.18 (p o A+Go ) N( 8)式中:p o —油腔供油压力,p o = 3 kg/cm 2 ;A —油腔在水平面上投影面积, 2A = 60 cm 2;C ___ .1 —测力计2—测力杆3—卡板4—加载板 5 —轴6—轴承7 —平衡重块图8-8加载及摩擦力矩测量装 置Go —初始载荷(包括压力表、平衡重及轴瓦的自重) Go = 8 kgf 。

3.摩擦系数测量装置摩擦系数是通过测量轴承摩擦力矩而得到的。

如图8-8所示:在轴承6上联出一水平测力杆2,当轴5旋转后,作用在轴承 6上的摩擦力矩,通过测力杆 2上的测力计1,测出杆端的Q 力,由平衡得:fF d QL2 L Q 则有:f牛 Q( 10)d F式中:L —测力杆力臂长度 (mm);d — 轴颈直径 (mm); Q —测力杆端的平衡力; Q = 0.0098QO N;Qo —重锤式拉力计读数 (gf)。

4. 油膜压力测量装置(如图8-9所示)在轴瓦上半部承载区、 轴瓦宽度的中间剖面上, 沿圆周方向均布钻有 7个小孔,每个小孔联接一只压力表(即联接1~7表),当轴承形成动压油膜时,就可以通过压力表测得周向压力分布曲线。

在轴瓦轴向有效宽度 B 的1/4处钻有一个小孔,供联接压力表用(即联接表 8),这样根据轴向压力分布的对称原理,可测得轴向压力分布曲线。

图 8-9是轴瓦小孔分布的位置。

图轴瓦小孔分布示意图五•轴承性能参数 轴颈直径d = 60 mm 轴瓦宽度 B = 60 mm轴瓦材料为青铜,配合表面粗糙度Ra6.3 m轴颈材料为45钢,配合表面粗糙度 Ra3.2 m 相对间隙“ —(1-1.5 ) %。

润滑油牌号及供油方式 N15机械油循环供油油的粘度 =0.024 Pas初始载荷 Go = 78 N ( 8kgf ) 测力杆力臂长度 L = 150 mm加载范围 F = 0 3000 N 调速范围 n = 20 1200 r/min 电动机型号JZT12-4 电动机功率0.8 kW六. 实验方法及步骤1. 油膜压力分布的测定丄「2 2 B■接压力表1~7先用卡板3 (见图8-8)卡住测力杆2,以免测力计损坏。

旋动油泵开关13 (见图8-10)启动油泵。

调节溢流阀5和减压阀3,使供油压力表2指示值为0.5 kgf/cm2。

将变速箱8的手柄放在低速档(左斜位置),转动调速旋钮11旋至最低速,开启主电机开关14和转速控制开关12,指示红灯亮。

转动调速旋钮11,使转速读数100 200 r/min之间,再将变速手柄扳到高速档(右斜位置),逐渐升速到600 r/mi n( 800 r/mi n),调节溢流阀5,使加载油腔压力表指示值为p0=4 kgf/cm 2(轴承载荷F=2432 N),运转几分钟待稳定后,依次自左至右记录七只压力表及轴向压力表的读数。

重新调节加载油腔压力P0 =3 kgf/cm 2(F=1844 N),待稳定后记录压力表的值于实验报告表图8-1中。

2. 摩擦系数及特性系数的测定特性系数的获得主要是测定、p及n各项参数。

粘度主要根据轴承平均工作温度t m来决定。

轴承压力p可根据轴承载荷确定。

转速可从(图8-10)转速表10上测得。

实验时,使加载油腔压力p0 = 4 kgf/cm 2时保持不变,将卡板7 (见图8-8)打开,使测力杆3可以自由转动,依次将主轴转速调至600、500、400、300、200、100、50r/min,记七.数据处理1. 绘制轴承周向油膜压力分布曲线12—转速控制开关13—油泵开关14—主电机开关15调速电动机图8-10 HZS —I型试验总体外观图录各转速时的测力计读数于表2中。

由经验得出轴承的平均工作油温t m= 9.32+0.85t1 0C根据轴承平均油温可查得粘度t m为:(11)2--345 671213» '・1「J ■1515改变轴承载荷,使加载油腔压力P0 = 2kgf/cm 2,重复上速过程,将所测得之一曲线与第一次试验相比较(两次试验曲线应基本重合)以证明仅与有关。

测试完毕,应注意先卸载、降速再停机。

1—试验轴承箱2—供油压力表3—减压阀4—加载油腔压力表5—液流阀6—油箱7 —总开关8 —变速箱9—V带传动10—转速表11—转速调节旋纽与承载量曲线。

1=0.024(Pa S)。

89右左-I—^-^11011图8-11周向油膜压力分布曲线当形成压力油膜后,压力表稳定在某一位置时,表中读数即表示轴承该点之周向油膜压力。

由左向右即为1、2、~7号压力表,然后依次将各压力表的压力值记录在表 1中。

根据 测出的压力大小按一定的比例绘制周向油膜压分布曲线,如图8-11所示。

具体画法是:以轴径d 作一个圆,取中线为 0—0水平线,沿着上半圆从左向右画出角度为30、50、70、 90、110、130、150等分,得出油孔点 1、2、3、4、5、6、7位置。

通过这些点与圆心 连成径向线,在它们延长线上,将压力表测出的压力值按比例(比例:0.1MFa =1cm )画出压力向量1 — 1'、2 — 2'、…7— 7'。

将1'、2….7各点连成光滑曲线,这就是位于轴承 中部截面的油膜周向压力分布曲线。

如图8-11所示。

为了确定轴承承载量,可以用作图法确定轴承中间剖面上的平均单位压力P m 值。

作图如下:将图8-11上部圆周上各点 0、1、2、……7、8投影到0 — 0水平直线上(见图 8-11 下部)得到0、1、2、 ......................... 7、8点,在相应点的垂线上标出对应压力值在垂直方向的分量,从而在垂线上得到 0、1、2、3……7、8点,将各点连成光滑曲线即为承载量曲线。

用数 方格方法求出此曲线所围的面积,与在纵向上取P m 值使其与0—8所围的矩形面积相等,此P m 值经原比例换算后既为轴承中间剖面上的平均单位压力。

轴承处在液体摩擦工作状态时,轴承内油膜的承载量可用下式求出:P = k P m B d(12)式中:k 为轴瓦在宽度方向的端泄对油膜压力的影响系数。

一般认为轴向油压近似呈二次抛物线规律分布, k=2/3。

将求得的载荷P 与实际载荷F加以分析比较。

2. 绘制轴承轴向油膜压力分布曲线通过压力表8可测出轴向B/4处的压力p 8,用坐标纸绘制轴向油膜压力分布曲线,画 一条水平线取长度 0—0为B = 60mm ,在中点4的垂线上按前述比例尺标出该点的压力值 为4— 4 = P 4 (端点为p 4),在距两端B/4 =15 mm 处(即8点)沿垂线方向各标出压力值8—8 = P 8,轴承两端压力为零,0、8、4、8、0五点可连成一光滑曲线如图 8-12所示。

如果轴向油膜压力符合抛物线分布规律,根据计算,则有 P 8 =3/4 p max ,其中p max = p 4,将实测的P 8与此值进行分析比较。

0 123 4 5 6 7 8O'轴向油膜压力分布曲线3. 绘制轴承摩擦特性曲线滑动轴承的摩擦系数是润滑油粘度,轴的转速n 、轴承压力p 的函数, 值称为滑动轴承的特性系数。

其最小值是液体摩擦和非液体摩擦的临界点。

其特性系数 由式(7)表示。

记算出不同压力及转速下的摩擦系数,在坐标纸上以 为横坐标,f 为纵坐标绘制f —曲线,如图8-2所示。

f 由式(10)计算。

八. 计算机辅助实验及数据处理①在该轴瓦的上半部沿周向、轴向承载区测试压力部位安装压力传感器,设计一套测试系统,通过A/D 转换,编制有关程序,实现了计算机对油膜压力实验数据的采集(对于摩擦 特性曲线实验,采用“人机对话”方式输入实验数据)。

然后,利用计算机进行计算和数据处理,直接在屏幕上显示,由打印机打印输出实验结果、 实验数据表格、绘制油膜压力分布和摩擦特性曲线。

实验装置的系统框图如图 8-13所示。

图8-13计算机辅助实验框图实验前首先检查试验台压力传感器及各设备联接是否正确, 调整主轴转速并加载,待油膜压力稳定后操作机算机。

计算机操作步骤如下:1 •直接双击桌面滑动轴承图标。

2.点击读取压力,然后返回主菜单。

3•在轴系加载栏填入你所加的载荷(机器面板上的载荷数)然后进行实验,按规定要求 04. 在主轴转速栏填入你调的转速数。

5. 点击显示压力6 •在显示的桌面上点击计算压力数据7.在显示的桌面上点击计算压力分布图。

&返回主菜单,进入实验报告输出。

九.实验报告液体动压润滑径向轴承油膜压力和特性曲线实验报告(一)实验目的(二)轴承简图及主要参数(1)主要参数型号轴颈直径 d =mm轴承宽度B=mm测力杆力臂长度L =mm轴瓦材料轴径材料润滑油牌号润滑油粘度=Pas初始载荷(或轴瓦、压力计与自重)Go =(2)轴承简图(三)实验结果(1)油膜压力分布测试值(表1)轴承摩擦特性曲线测试值及计算值(表)(4) f —摩擦特性曲线图(用两张16开坐标纸绘出附于报告后面)。

相关主题