当前位置:文档之家› 毕业设计-LD自动功率控制系统

毕业设计-LD自动功率控制系统

******************大学毕业设计(论文)设计(论文)题目:基于MCS-51单片机的LD自动功率控制系统系别:电子工程系专业:班级:姓名:学号:指导教师:完成时间:目录1 概述................................................................. - 3 - 1.1课题背景........................................................... - 3 - 1.2国内外研究情况..................................................... - 3 - 1.3课题目的及意义..................................................... - 4 -1.4主要性能及要求..................................................... - 4 -2 半导体激光器的结构与工作原理......................................... - 5 - 2.1半导体激光器简介................................................... - 5 - 2.2半导体激光器结构................................................... - 6 - 2.3激光产生条件....................................................... - 6 - 2.4影响半导体激光器工作的因素......................................... - 7 -2.5半导体激光器的工作特性............................................. - 9 -3 硬件设计............................................................ - 11 - 3.1系统的组成........................................................ - 11 - 3.2控制元件简介...................................................... - 12 -3.3分电路模块........................................................ - 14 -4 软件设计............................................................ - 16 - 4.1编程语言的选择.................................................... - 16 -4.2程序框图.......................................................... - 19 -5 电路调试与仿真...................................................... - 21 - 5.1硬件调试.......................................................... - 21 - 5.2软件调试.......................................................... - 22 - 毕业设计总结........................................................... - 24 - 参考文献............................................................... - 25 - 附录一................................................................. - 26 - 附录二................................................................. - 31 -基于MCS-51单片机的LD自动功率控制系统摘要:稳定光源在光学测量中象电子电路测试时用振荡器作为信号源一样,必须要求发出光功率可调、稳定度高的光信号,稳定光源正是急待开发的光学系统测试仪器中的一种重要的基础设备在精密光电检测领域中,微小的光源波动会引起被测量的较大偏移,从而产生较大的测量误差,因此本课题介绍的是一种单片机控制激光二极管输出功率的方法,针对SANYO 30mW红光LD设计了驱动电路。

单片机内对监测电流偏差进行了PID调节运行,使激光二极管输出功率稳定。

本课题设计的是稳定半导体激光器的输出功率,我们从自动控制理论出发,先阐述PID控制理论,接着再设计了数字设置输出光功率、闭环PID自动调节的LD驱动电路,以此达到使半导体激光器功率稳定的目的。

[关键词]LD驱动电路,单片机,功率稳定可调激光二极管,PID调节。

1 概述1.1课题背景在精密光电检测领域中,微小的光源波动会使得被测量偏移,进而产生较大的测量误差,所以对于光源稳定性的要求就非常高了。

而稳定光源在光学测量中象电子电路测试时用振荡器作为信号源一样,必须要求发出高稳定、光功率可调的光信号,稳定光源正是急待开发的光学系统测试仪器中的一种重要的基础设备。

半导体激光器(LD)与其他激光器相比,不仅具有单色性高、高亮度、高方向性的特性,而且具有体积小、价格低、低功率、易于集成、便于工作、寿命长、波长可调、可快速调制等一系列优点,尤其是多重量子井型的效率有20~40%,P-N型也达到15%~25%,总而言之能量效率高是其最大特色。

另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激发光源可说是最佳的选择。

1.2国内外研究情况国内一些学者对稳定激光光源做了研究。

有的设计使激光器注入电流稳定,配合使用温控电路,这种方法虽然对稳定性有一定提高,但对其它影响因素缺乏考虑,不是一种闭环控制系统。

有的对光功率的调节只使用模拟的积分调节,由于积分控制对稳态误差的消除作用是靠对误差的积累产生的,故反映不灵敏,且会使系统稳定裕量下降,超调增大,一般不单独使用。

这两种方法共同特点是模拟调节。

再者,2012年广东工业大学机电工程学院的董全财提出了一种基于DSP技术和PID算法的自动控制方法,来控制半导体激光二极管的驱动电流以实现对其输出功率。

与传统的通过模拟调制的方法来实现激光二极管输出功率控制的方法相比,DSP技术与PID算法的应用能有效提高半导体激光二极管输出功率的控制精度和稳定性。

而本课题是从自动控制理论出发,先阐述PID控制理论,接着再设计了数字设置输出光功率、闭环PID自动调节的LD驱动电路,以此达到使半导体激光器功率稳定的目的。

1.3课题目的及意义光源的微小波动会引起被测量的较大偏移,在精密光电检测领域中,这样的偏移会产生较大的测量误差。

如在半导体薄膜特性检测中,常常需要检测薄膜反射比以求解其它光电学参量,在这种情况下,由于薄膜增长的缓慢(0.1nm级/秒),反射比变化非常小,其对于光源稳定性的要求非常高,达到0.1%,所以稳定光源正是急待开发的一种重要测试仪器设备。

为减少测量误差,LD自动功率控制系统便成为一个重要的研究方向。

与传统的通过模拟调制的方法来实现激光二极管输出功率控制的方法相比, PID算法的应用能有效提高半导体激光二极管输出功率的控制精度和稳定性。

并且半导体激光器(LD)由于其具有体积小、价格低、低功率、可快速调制、方向性好、光功率利用率高、工作电压要求较低等一系列特点,越来越受到人们的重视,广泛应用于半导体微电子领域、光电子技术领域、激光技术领域、信息技术领域等方面。

1.4主要性能及要求功率稳定可调的激光二极管(LD)在精密光电检测和光纤通信系统中应用广泛。

本文针对SANYO 30mW红光LD设计了驱动电路,其驱动电流在0~100mA之间可调,最小可调量<0.01mA。

单片机内对监测电流偏差进行了PID调节运行,使激光二极管输出功率稳定可调。

2 半导体激光器的结构与工作原理2.1半导体激光器简介半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件。

1954年制成了第一台微波量子放大器,获得了高度相干的微波束。

1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。

1960年T.H.梅曼等人制成了第一台红宝石激光器。

1961年A.贾文等人制成了氦氖激光器。

1962年R.N.霍耳等人创制了砷化镓半导体激光器被成功激发。

在1970年实现室温下连续输出。

后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生产量最大的激光器。

半导体激光器工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

图2.1 半导体激光器P-I的关系曲线图半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。

电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。

光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励。

在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。

2.2半导体激光器结构半导体激光器的外形及大小与小功率半导体三极管差不多,仅在外壳上多一个激光输出窗口。

夹着结区的p区与n区做成层状,结区厚为几十微米,面积约小于1mm2。

图2.2 半导体激光器结构示意图2.3激光产生条件半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现。

相关主题