当前位置:
文档之家› 第六章 泵与风机的调节与运行
第六章 泵与风机的调节与运行
第六章 泵与风机的调节与运行
第一节 管路性能曲线和泵与风机工作点 第二节 泵与风机的调节 第四节 液力偶合器 第五节 泵与风机的联合运行 第六节 泵与风机的启动、运行和维护 第七节 泵与风机的不稳定工况
第一节 管路性能曲线和泵与风机的工作点
泵与风机的性能曲线,只能说明泵与风机自身的性能,但泵与 风机在管路中工作时,不仅取决于其本身的性能,而且还取决 于管路系统的性能,即管路特性曲线。由这两条曲线的交点来 决定泵与风机在管路系统中的运行工况。 一、管路性能曲线 管路性能曲线就是流体在管路系统中通过的 流量与所需要的能量之间的关系曲线。
驼峰状性能曲线与管路性能曲线交点 可能有两个,其中在泵与风机性能曲 线的下降段的交点为稳定工作点。 为什么K点不稳定?
图6-4 泵与风机的不稳定工作区
思考:某台可变速运行的离心泵在转速n0下的运行工况点
为M (qVM,pM ),如下图所示。当降转速后,流量减小到qVA, 试定性确定这时的转速。
第二节 泵与风机的调节
一、液力偶合器传动原理
循环圆:泵轮与涡轮所组成的轴面腔室; 勺管:可以在旋转内套与涡轮间的腔室中移动,以调节循环 圆内的工作油量。
由动量矩方程得泵轮作 用于工作油的力矩为:
M po qV (v2uP r2 v1uP r1 )
工作油作用于涡轮上的 力矩为:
M oT qV (v1uT r2 v2uT r1 )
qV 2 qV 1 H 2 H1 ( n2 900 qV 1 0.91875 qV 1 ( L / s) n1 960 n2 2 900 2 ) H1 ( ) 0.86410 H1 n1 960
(3)作H2-qv2性能曲线,得交点B,求得流量减少16.3%。
【例6-2】某水泵在转速为n1= 1450r/min时的性能曲线和管路 性能曲线如图所示,若把流量调 节为qv=8m3/h,比较采用节流调 节和变速调节各自所消耗的功率。 假定泵原来效率为65%,节流调 节后效率为63%。
第五节 泵与风机的联合运行
一、并联运行 并联运行就是两台或两台以上泵或风机同时向同一管路系统输 送流体的工作方式。主要目的是为了增加泵或风机的流量。
1、相同性能的泵并联运行 特点:各时总流量等于 每台泵流量之和,即qVA=2qVB, 而HA=HB。
的节流损失上。 应用在离心泵,调节简单可靠。
2、入口端节流调节 主要用于风机上,它是通过改 变入口挡板开度来调节流量。 △H1< △H2, 入口挡板调节比 出口节流调节损失小,运行经济 性要好一些。 但是,对于水泵来说,不可采 用入口端节流调节。
二、入口导流器调节 入口导流器调节是离心风机广泛采用的一种调节方式,通 过改变入口导流器的装置角使风机性能曲线改变来实现调节。 导流器全开时,导流器的叶片角为0o,气流沿径向进入叶轮。
p p H Hp hw g p ( p p) ghw
hw KqV
2
管路性能曲线表明:对一定的管路系 统来说,通过的流量越多,需要外界 提供的能量越大;管路性能曲线的形 状、位置取决于管路装置、流体性质 和流动阻力。
图6-1 管路性能曲线
二、泵或风机的工作点 如果将其一转速下泵或风机性能 曲线和管路性能曲线按同一比例 绘于同一坐标图上,则两条曲线 相交于M点,即工作点。
应用:锅炉给水泵为防 止在小流量区可能发生 汽蚀二设置再循环管路, 进行旁通调节。
图6-10 旁通调节 1-压力管路;2-回流管路
四、动叶调节
动叶调节是在泵与风机转速不变的情况下,通过改变动叶片 安装角βb来改变泵与风机的性能曲线形状、使工作点位置改 变,从而实现工况调节的。
b i
图6-33 两台相同性能泵并联运行
(2)并联时每台泵的流量比 它单独运行时的流量减少了, 即qVB<qVC; (3)总扬程比单独运行时扬 程提高了,即HA>HC。 (4)对于经常处于并联运行 的泵,为提高其运行的经济性, 应按 ? 点选择泵。 B点
所谓调节,就是在运行中按照客观要求,用人为的方法改变 工作点的位置。 方法:分别或同时改变这两条性能曲线使工作点位置改变。 一、节流调节
节流调节是通过改变管路系统调节阀的开度,使管路曲线形 状发生变化来实现工作位置点的改变。节流调节分出口端节 流调节和入口端节流调节两种方法。
1、出口端节流调节
多余的能量△H完全消耗在调节阀
偶合器的效率η为:
M T T nT nP M PP
设泵轮与涡轮的速比为 i,则
i nT nP
结论:忽略各种损失的情况下,液力偶合器的传动效率等于 传动的速比。
速比与滑差率 s 有下列关系: nP nT i 1 1 s nP 液力偶合器的速比一般为0.97~0.98,滑差一般为0.02~0.03。
(3)i<2/3时,虽然传动效率随 i 的降低而下降,但损失功率
小于2/3处,原因是泵与风机功率与转速成3次方关系。
四、液力偶合器的特点
1、可以实现无级变速 液力偶合器的调速范围为 i=0.2~0.98,实际运行中当 i<0.4时常出现不稳定状况。 2、可以满足锅炉点火工况要求 锅炉点火时,要求给水量较小。 3、可以空载启动,离合方便 利用液力偶合器的充、放油,可实现无油空载启动原 动机。 4、可以隔离振动 泵轮与涡轮无机械连接。 5、对动力过载起保护作用 动力过载时可有效保护原动机。 6、液力偶合器运转时,有一定功率损失 最大功率损失处速比为 i=2/3。
液力偶合器的外特性
(2)液力偶合器的效率η随着速 比 i 的增加而直线上升。 当效率高达A点(i=0.985)后,效 率曲线急剧下降到C点(i=0.99)
(3)设计工况点,液力偶合器应 具有尽可能大的扭矩,亦就是尽 可能大的力矩系数λ P。
图6-22 液力偶合器的外特性
(4)i=0 时,扭矩应尽可能地小。它意味着防护性能好、 脱离性能好,因空转而损失的发热少。
六、变速调节 1、变速调节原理及节能效果 A点轴功率
PA gqV 1H A / gqV 1 ( H B H ) /
1 gqV 1 ( H B H ) gqV 1 ( H B H )( 1)
B点轴功率
PB gqV 1H B /
1 gqV 1H B gqV 1 H B ( 1)
2、偶合器的充液率 通常外特性是指液力偶合器在全 充油量情况下的输出特性曲线。
C V V0
充油量不同时,所有扭矩曲线都 交于 i=1.0这一点。
图6-24 液力偶合器部分充油时外特性
三、液力偶合器传动的功率损失
通过前面的学习我们知道η= i,那么速比较小的情况下,是否 偶合器的损失较大呢? 设泵轮功率为 PP,涡轮功率为 PT,则
1、偶合器的外特性:是在泵轮转速nP、工作油密度ρ及运动粘 性系数γ不变的条件下,泵轮力矩MP(MT)、效率η与速比 i 的 函数关系。
(1)扭拒MP(MT)随速比的增 加而降低。 i=1 即 nP=nT,扭拒为零; i=0 即 nT=0时,扭拒MP(MT)达 到最大;制动工况,制动扭拒。
图6-22
PP PT / PT / i
根据比例定律,得
PT n ( T )3 PT 0 nT 0
下标0表示最高效率点
nT nP 3 i 3 PT ( ) PT 0 ( ) PT 0 nP nT 0 i0
代入,得
i2 PP 3 P T0 i0
PT 因为 i PP
P PP P T
解: PA gqV H 1.29(kW ) 1000 1
PA1
gqV 1H1 1.38(kW ) 1000 2
gqV 2 H 2 PA2 0.64(kW ) 1000 1
第四节 液力偶合器
液力偶合器又称液力联轴器,主要由泵轮、涡轮、旋转内套、 勺管等组成;一般泵轮与涡轮叶片数差1~4片。
偶合器传动损失的功率为
所以
i 2 i3 P PP PT 3 PT 0 i0
为求出偶合器最大传动功率损失,对上式求导
d (P) 2i 3i 2 PT 0 0 3 di i0
解得 i=0及 i=2/3。 结论:(1)i=0,制动工况,涡轮静止; (2)i=2/3,功率损失最大值时的速比。
说明: (1)采用汽蚀调节对泵的通流部件损坏并不十分严重,而 可使泵自动调节流量,减少运行人员,降低水泵耗电约 30%~40%; (2)在中小型发电厂的凝结水泵上被广泛采用,大型电厂 设备安全性非常重要,一般不采用汽蚀调节; (3)实际工作中,必须比较采用汽蚀调节的经济效益,以 及由于汽蚀所增加的检修工作量的相关问题; (4)汽蚀泵的叶轮采用抗汽蚀材料。
图6-2 泵的工作点
M点为能量供需平衡点。 A点:HA>HA′,多余的能量必使 管内流体加速,流量增大,直到 移至M点。 B点:HB<HB′,能量供不应求, 使流量减少,工作点向M点移动。
图6-2 泵的工作点
因为真正克服管路阻力的只是 全压中的静压部分,所以有时 风机还用静压工作点N。
图6-3 风机的工作点
tg 1
vm v1u v2u u 2
改变叶片安装角βb ,冲角i和β∞也随之发生变化。从而使扬程 (全压)、流量发生变化,以达到工况调节的目的。
图6-11 动叶可调轴流泵性能曲线
固6-14 动叶可调轴流风机与入口导流器调节的离心 风机性能曲线比较
五、液位调节(汽蚀调节) 液位调节就是利用水泵系统中吸水箱内水位的升降来调节流 量。由于泵入口液柱(压力)降低,泵内发生汽蚀,使水泵 性能曲线突然下降。不同液位高度相应的汽蚀性能曲线与管 路性能曲线交点即为一系列工作点。
图6-21 液力偶合器速度三角形
根据流体力学原理,泵轮与涡轮之间的轴向间隙无叶片,所 以无粘性流体在旋转方向上的动量矩不变,即 rvu=常数。