当前位置:文档之家› 微分方程例题

微分方程例题

1. 求下列微分方程的通解: (1)x e y dxdy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+⎰⋅⎰=-----⎰⎰.(2)xy '+y =x 2+3x +2;解 原方程变为xx y x y 231++=+'. ])23([11C dx e x x e y dx x dx x +⎰⋅++⎰=⎰- ])23([1])23([12C dx x x xC xdx x x x +++=+++=⎰⎰ xC x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ;解 )(cos sin cos C dx e e e y xdx x dx +⎰⋅⎰=⎰--)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰.(4)y '+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)2sin (cos ln cos ln C dx e x e x x +⋅=⎰- ⎰+⋅=)cos 1cos sin 2(cos C dx xx x x =cos x (-2cos x +C )=C cos x -2cos 2x .(5)(x 2-1)y '+2xy -cos x =0;解 原方程变形为1cos 1222-=-+'x x y x x y . )1cos (1221222C dx e x x e y dx x xdx x x +⎰⋅-⎰=⎰--- )(sin 11])1(1cos[112222C x x C dx x x x x +-=+-⋅--=⎰. (6)23=+ρθρd d ; 解 )2(33C d e e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθ θθθ33332)32(--+=+=Ce C e e .(7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +⎰⋅⎰=⎰-)4(22C dx e x e x x +⋅=⎰-2222)2(x x x Ce C e e --+=+=.(8)y ln ydx +(x -ln y )dy =0;解 原方程变形为yx y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e y e x dy y y dy y y +⎰⋅⎰=⎰- )ln 1(ln 1C ydy yy +⋅=⎰ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(-+=-x y dxdy x ; 解 原方程变形为2)2(221-=--x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +⎰⋅-⎰=⎰--- ⎰+-⋅--=]21)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2). (10)02)6(2=+-y dxdy x y . 解 原方程变形为y x y dy dx 213-=-. ])21([33C dy e y e x dy y dy y +⎰⋅-⎰=⎰- )121(33C dy yy y +⋅-=⎰ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解: (1)x x y dxdy sec tan =-, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=⎰. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x . (2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x dx x +⎰⋅⎰=⎰- )cos (1)sin (1C x xC xdx x x x +-=+⋅=⎰. 由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x xy --=π. (3)x e x y dx dy cos 5cot =+, 4|2-==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +⎰⋅⎰=⎰- )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +-=+⋅=⎰. 由4|2-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e x y . (4)83=+y dxdy , y |x =0=2; 解 )8(33C dx e e y dx dx +⎰⋅⎰=⎰- x x x x x Ce C e e C dx e e 3333338)38()8(---+=+=+=⎰. 由y |x =0=2, 得32-=C , 故所求特解为)4(323x e y --=. (5)13232=-+y xx dx dy , y |x =1=0. 解 )1(32323232C dx e e y dx x x dx x x +⎰⋅⎰=⎰--- )21()1(2222113113C e e x C dx e x e x x x x x +=+=--⎰. 由y |x =1=0, 得eC 21-=, 故所求特解为)1(211132--=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y .解 由题意知y '=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+⎰⎰=⎰⎰--=e x (-2xe -x -2e -x +C )=Ce x -2x -2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dtdv m 21-=, 即t m k v m k dt dv 12=+. 由通解公式得 )()(222211C dt e t m k e C dt e t m k ev t m k t m k dt m k dt m k +⋅=+⎰⋅⎰=⎰⎰-- )(22222121C e k m k te k k e t m kt m k t m k +-=-. 由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k t m k +-=- 即 )1(222121t k e k m k t k k v ---=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知 01025sin 20=--i dt di t , 即t i dtdi 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+⎰⋅⎰=⎰.因为当t =0时i =0, 所以C =1. 因此 )45sin(25cos 5sin 55π-+=+-=--t e e t t i t t (A).6. 设曲dy x x xf dx x yf L])(2[)(2-+⎰在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).解 因为当x >0时, 所给积分与路径无关, 所以])(2[)]([2x x xf xx yf y -∂∂=∂∂, 即 f (x )=2f (x )+2xf '(x )-2x ,或 1)(21)(=+'x f xx f . 因此 x C x C dx x x C dx e e x f dx dx +=+=+⎰⋅⎰=⎰⎰-32)(1)1()(11. 由f (1)=1可得31=C , 故x x x f 3132)(+=. 7. 求下列伯努利方程的通解: (1))sin (cos 2x x y y dxdy -=+; 解 原方程可变形为 x x ydx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---. ])cos sin ([1C dx e x x e y dx dx +⎰⋅-⎰=--⎰x Ce C dx e x x e x x x sin ])sin (cos [-=+-=⎰-, 原方程的通解为x Ce yx sin 1-=. (2)23xy xy dxdy =-; 解 原方程可变形为 x y x dxdy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x e y xdx xdx +⎰⋅-⎰=⎰-- )(222323C dx xe e x x +-=⎰- 31)31(222232323-=+-=--x x x Ce C e e , 原方程的通解为311223-=-x Ce y . (3)4)21(3131y x y dx dy -=+; 解 原方程可变形为)21(31131134x y dx dy y -=+, 即12)(33-=---x y dx y d . ])12([3C dx e x e y dx dx +⎰⋅-⎰=--⎰x x x Ce x C dx e x e +--=+-=⎰-12])12([, 原方程的通解为1213--=x Ce yx . (4)5xy y dxdy =-; 解 原方程可变形为 x ydx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dx dx +⎰⋅-⎰=⎰--)4(44C dx xe e x +-=⎰- x Ce x 441-++-=, 原方程的通解为x Ce x y44411-++-=.(5)xdy -[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅-⋅, 即)ln 1(22)(22x y x dx y d +-=+--. ])ln 1(2[222C dx e x e y dx x dx x +⎰⋅+-⎰=⎰-- ])ln 1(2[122C dx x x x ++-=⎰x x x x C 94ln 322--=, 原方程的通解为x x x x Cy 94ln 32122--=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为 )()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x -=-, 即 dx xdu v f v g v v g 1)]()([)(=-, 积分得 C x du v f v g v v g +=-⎰ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解: (1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为 21u dx du =-, 即21ududx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =-x +tan(x -C ). (2)11+-=yx dx dy ; 解 令u =x -y , 则原方程化为 111+=-udx du , 即dx =-udu . 两边积分得 1221C u x +-=. 将u =x +y 代入上式得原方程的通解 12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1). (3)xy '+y =y (ln x +ln y );解 令u =xy , 则原方程化为 u x u x u x udx du x x ln )1(2=+-, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y '=y 2+2(sin x -1)y +sin 2x -2sin x -cos x +1;解 原方程变形为y '=(y +sin x -1)2-cos x .令u =y +sin x -1, 则原方程化为x u x dx du cos cos 2-=-, 即dx du u =21. 两边积分得 C x u+=-1. 将u =y +sin x -1代入上式得原方程的通解 C x x y +=-+-1sin 1, 即Cx x y +--=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为 )1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为 )1()1(1u u x u u x u dx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得 du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+--=+. 将u =xy 代入上式得原方程的通解 xy xyy x C x ln 121ln 221+--=+, 即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1)。

相关主题