第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。
本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。
3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; –––––塔内所需要的理论板层数; –––––总板效率; –––––塔板间距,m 。
(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ; –––––气体体积流量,m 3 u –––––空塔气速,u =(0.6~0.8) (3-3) VVL Cu ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,3V ρ–––––气相密度,3C –––––负荷因子,2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,L σ–––––操作物系的液体表面张力, 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。
32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取1。
hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,。
(2) 踏板设计开孔区面积a A :⎪⎪⎭⎫⎝⎛+-=-r x r x r x A a 1222s i n 1802π (3-11)式中 ()s d W W Dx +-=2 c W Dr -=2开孔数n :2155.1t A n a=(3-12) 式中 a A –––––鼓泡区面积,m 2; t –––––筛孔的中心距离,m 。
200907.0⎪⎭⎫⎝⎛==t d A A a φ (3-13)3.1.3筛板流体力学验算(1) 塔板压降g h P L P P ρ=∆ (3-14) σh h h h l c P ++= (3-15) 式中 c h –––––与气体通过筛板的干板压降相当的液柱高度,m 液柱;l h –––––与气体通过板上液层的压降相当的液柱高度,m 液柱; σh –––––与克服液体表面张力的压降相当的液柱高度,m 液柱。
⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=L V c cu h ρρ2051.0 (3-16) 式中 0h –––––气体通过筛孔的速率,; 0c –––––流量系数。
()OW W L l h h h h +==ββ (3-17) fT sa A A V u -=(3-18)V a u F ρ=0 (3-19) 式中 0F –––––气相动能因子,()121m s kg ⋅a u –––––通过有效传质区的气速,; T A –––––塔截面积,m 2。
04gd h L Lρσσ=(3-20) (2) 液沫夹带2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Ta L V h H u e σ (3-21) 式中 V e –––––液沫夹带量,液体气体; f h –––––塔板上鼓泡层高度,m 。
(3) 漏液()VL L h h C u ρρσ-+=13.00056.04.40min ,0 (3-22)min,00u u K =(3-23)式中 K –––––稳定系数,无因次。
K 值的适宜范围是1.5~2。
(4) 液泛d L P d h h h H ++= (3-24) 式中 d H –––––降液管中清液层高度,m 液柱;d h –––––与液体流过降液管的压降相当的液柱高度。
()203'153.0153.0u hl L h W sd =⎪⎪⎭⎫ ⎝⎛= (3-25) 式中 u 0ˊ–––––液体通过底隙时的流速,。
()W T d h H H +≤ϕ (3-26)式中 ϕ–––––安全系数,对易发泡物系,ϕ=0.3~0.5。
3.2 设计计算3.2.1精馏塔的塔体工艺尺寸计算由模拟结果知全塔的气相、液相平均物性参数如表3-1。
表3-1 物性参数表1. 塔径的计算查5-1史密斯关联图[6],图的横坐标为:1203.0685.3427.8324604.236000197.036002121=⎪⎭⎫⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛V L L L Vh ρρ取塔板间距0.50m ,板上液层高度L h =0.08m ,则L T h H - =0.50-0.006=0.42m查图[6]5-1的C 20=0.09,由式3-5得:0878.020675.179.0202.02.020=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=L C C σ由式3-4得:32.1685.3685.3427.8320878.0max =-⨯=-=V V L Cu ρρρ() 取安全系数[6]为0.7,由式3-3得空塔气速为: 0.70.7×1.32=0.924( ) 由式3-2得塔径为:84.1924.014.34604.244=⨯⨯==uV D Sπ(m )按标准塔径圆整后为: 2.000m 塔截面积为: 14.34414.342=⨯==D A T π(m 2) 实际空塔气速为: 784.014.34604.2===T S A V u () 2. 精馏塔有效高度的计算模拟结果20,由式3-1得有效塔高为:5.195.015.020)1(=⨯⎪⎭⎫⎝⎛-=-=T T T H E N Z (m ) 3.2.2 塔板主要工艺尺寸的计算1. 溢流装置的计算因塔径2.0 m ,可选用单溢流弓形降液管,采用凹形受液盘[6]。
各项计算如下: (1) 堰长W l4.10.27.07.0=⨯==D l W (m )(2) 溢流堰高度W h由式3-7得堰上液层高度OW h 为:039.04.136000197.0110004.2810004.283232=⎪⎭⎫ ⎝⎛⨯⨯⨯=⎪⎪⎭⎫⎝⎛=WhOWl L E h (m )由式3-6得溢流堰高度为:041.0039.008.0=-=-=OW L W h h h (m )(3) 弓形降液管宽度和截面积f A由D l w=0.7,查图[6]5-7 弓形降液管的参数图得: 088.0=Tf A A 15.0=D W d2763.014.3088.0088.0=⨯=⨯=T f A A (m 2)30.0215.015.0=⨯=⨯=D W d (m )依式3-8验算液体在降液管中的停留时间,即01.736000197.05.02763.036003600=⨯⨯⨯==hTf L H A θ(s )>5(s )故降液管设计合理。
(4) 降液管底隙高度0h由式3-10得降液管底隙高度0h 为:035.04.04.136000197.03600'360000=⨯⨯⨯==u l L h W h (m )由式3-9得:006.0035.0041.00=-=-h h W (m )故降液管底隙高度设计合理。
2. 塔板布置(1) 塔板的分块因D≥800,故塔板采用分块式。
查[6]表5-3得,塔板分为5块。
(2) 边缘区宽度确定取′=0.08m ,0.05m 。
(3) 开孔区面积计算由式3-11可算得开孔区面积如下:()()62.008.03.020.22=+-=+-=s d W W D x (m ) 95.005.020.22=-=-=c W D r (m )()212221222175.295.062.0sin 18095.014.362.095.062.02sin 1802m r x r x r x A a =⎪⎪⎭⎫ ⎝⎛⨯+-⨯⨯=⎪⎪⎭⎫⎝⎛+-=--π (4) 筛孔计算及其排列本次设计所处理的物系无腐蚀性,可选用δ=4 碳钢板,取筛孔直径d 0=5 。
筛孔按三角形排列,取孔中心距t 为[6]:155330=⨯==d t ()由式3-12得筛孔数目n 为:11165015.0175.2155.1155.122=⨯==t A n a 个 由式3-13得开孔率为:%1.10101.0015.0005.0907.0907.02200==⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛==t d A A a φ气体通过阀孔的气速为:2.11175.2101.04604.200=⨯==A V u S () 3.2.3 筛板的流体力学验算1. 塔板压降(1) 干板阻力c h 的计算由式3-16得干板阻力c h 为:d 0/δ=5/3=1.67,查图[6]5-10得,C 0=0.76,由式3-16得干板阻力c h 为:415.0427.832685.3772.02.11051.0051.022=⨯⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=L V c cu h ρρ m 液柱 (2) 气体通过液层的阻力l h 计算由式3-18得:8592.02763.014.34604.2=-=-=f T s a A A V u ()由式3-19得:7.1685.38592.00=⨯==V a u F ρ ()2121m s kg ⋅ 查图[6]5-11得,β=0.53 由式3-17得l h 为:()042.008.053.0=⨯=+==OW W L l h h h h ββ m 液柱(3) 液体表面张力的阻力计σh 算由式3-20得σh 为:0017.0005.081.9427.83210675.174430=⨯⨯⨯⨯==-gd h L L ρσσ m 液柱由式3-15得气体通过每层塔板的总阻力为:0852.00017.0042.00415.0=++=++=σh h h h l c P m 液柱由式3-14得气体通过每层塔板的压降为:8.69581.9427.8320852.0=⨯⨯==∆g h P L P P ρ<700(设计允许值)2. 液面落差对于筛板塔,液面落差很小,因此可以忽略液面落差的影响。
3. 液沫夹带根据设计经验,f h =2.5 2.5×0.08=0.2 m 由式3-21得液沫夹带量为:0094.02.05.08592.010675.17107.5107.52.3362.36=⎪⎭⎫ ⎝⎛-⨯⨯=⎪⎪⎭⎫⎝⎛-⨯=---f Ta L V h H u e σV e =0.0094 液体气体<0.1 液体气体故在本设计中液沫夹带量V e 在允许范围内。