当前位置:文档之家› 螺杆压缩机系统装置设计

螺杆压缩机系统装置设计

摘要螺杆空气压缩机(又称为双螺杆压缩机)是机电一体化的工业产品,用途非常广泛,其简称:螺杆压缩机。

20世纪30年代,瑞典工程师Alf Lysholm在对燃气轮机进行研究时,希望找到一种作回转运动的压缩机,要求其转速比活塞压缩机高得多,以便可由燃气轮机直接驱动,并且不会发生喘振。

为了达到上述目标,他发明了螺杆压缩机。

在理论上,螺杆压缩机具有他所需要的特点,但由于必须具有非常大的排气量,才能满足燃气轮机工作的要求,螺杆压缩机并没有在此领域获得应用。

1937年,Alf Lysholm 终于在SRM公司研制成功了两类螺杆压缩机试验样机,并取得了令人满意的测试结果。

随后持续的基础理论研究和产品开发试验,螺杆压缩机才真正发展起来,并且其性能也在不断的完善。

螺杆压缩机具有结构简单、运行可靠及操作方便等一系列独特的优点,广泛应用于矿山、化工、动力、冶金、建筑、机械、制冷等工业部门。

在宽广的容量和式况范围内,逐步替代了其它种类的压缩机,统计数据表明,螺杆压缩机的销售量已占其它容积式压缩机销售量的80%以上,在所有正在运行的容积式压缩机中,有50%的是螺杆压缩机。

螺杆压缩机具有结构简单、体积小、没有易损件、工作可靠、寿命长、维修简单等优点。

关键词:螺杆压缩机主机阴、阳转子接触线型线容积第一章螺杆压缩机的现状和意义螺杆压缩机广泛应用于矿山、化工、动力、冶金、建筑、机械、制冷等工业部门,在宽广的容量和式况范围内,逐步替代了其它种类的压缩机,统计数据表明,螺杆压缩机的销售量已占其它容积式压缩机销售量的80%以上,在所有正在运行的容积式压缩机中,有50%的是螺杆压缩机。

今后螺杆压缩机的市场份额仍将不断的扩大。

20世纪30年代,瑞典工程师Alf Lysholm在对燃气轮机进行研究时,希望找到一种作回转运动的压缩机,要求其转速比活塞压缩机高得多,以便可由燃气轮机直接驱动,并且不会发生喘振。

为了达到上述目标,他发明了螺杆压缩机。

在理论上,螺杆压缩机具有他所需要的特点,但由于必须具有非常大的排气量,才能满足燃气轮机工作的要求,而螺杆压缩机只能提供中等排气量,因此并没有在此领域获得应用。

但尽管如此,Alf Lysholm及其所在的瑞典SRM公司,为螺杆压缩机能在其它领域的应用,继续进行了深入的研究。

1937年,Alf Lysholm 在SRM公司研制成功了两类螺杆压缩机试验样机,并取得了令人满意的测试结果。

1946年,位于苏格兰的英国 James Howden 公司,第一个从瑞典SRM公司获得了生产螺杆压缩机的许可证。

随后,欧洲、美国和日本的多家公司也陆续从瑞典SRM公司获得了这种许可证,从事螺杆压缩机的生产和销售。

最先发展起来的螺杆压缩机是无油螺杆压缩机。

1957年喷油螺杆空气压缩机投入了市场应用。

1961年又研制成功了喷油螺杆制冷压缩机和螺杆工艺压缩机。

过随后持续的基础理论研究和产品开发试验,通过对转子型线的不断改进和专用转子加工设备的开发成功,螺杆压缩机的优越性能得到了不断的发挥。

压缩机可分二大类,容积式压缩机和动力式压缩机。

容积式压缩机又可分往复式和回转式。

回转式压缩机可分单轴和双轴或多轴。

本可题研究的是螺杆空气压缩机,属于双轴压缩机。

螺杆压缩机--是回转容积式压缩机,在其中两个带有螺旋型齿轮的转子相互啮合,从而将气体压缩并排出。

用可靠性高的螺杆式压缩机取代易损件多,可靠性差的活塞式压缩机,已经成为必然趋势。

日本螺杆压缩机1976年仅占27%,1985年则上升到85%。

目前西方发达国家螺杆压缩机市场占有率为80%,并保持上升势头。

螺杆压缩机具有结构简单、体积小、没有易损件、工作可靠、寿命长、维修简单等优点。

螺杆压缩机有双螺杆与单螺杆两种。

单螺杆压缩机的发明比双螺杆压缩机晚十几年,设计上更趋合理、先进。

单螺杆压缩机克服了双螺杆压缩机不平衡、轴承易损的缺点;具有寿命长,噪音低,更加节能等优点。

八十年代技术成熟后,其应用范围在日渐扩大第2章螺杆压缩机基本结构2.1压缩与压缩压缩绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。

一全隔热的气缸内上述过程可成为现实。

等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。

压缩比(R)压缩比是指压缩机排气和进气的绝对压力之比。

例:在海平面时进气绝对压力为0.1 Mpa,排气压力为绝对压力0.8Mpa。

则压缩比:2 10.88 0.1PRP===(1)多级压缩的优点:(1)、节省压缩功;(2)、降低排气温度;(3)、提高容积系数;(4)、对活塞压缩机来说,降低气体对活塞的推力。

2.2压缩介质为什么要用空气来作压缩介质? 因为空气是可压缩、清晰透明的,并且输送方便(不凝结)、无害性、安全、取之不尽。

惰性气体是一种对环境不起化学作用的气体,标准压缩机能一样压缩惰性气体。

干氮和二氧化碳均为惰性气体。

空气的性质:空气成分:氮气(N 2) 氧气(O 2) 二氧化碳(CO 2)78.03% 20.93% 0.03%分子量:28.96比重:在0℃、760mmHg 柱时,r 0=1.2931kg/m 3比热:在25℃、1个大气压时,Cp=0.241大卡/kg -℃在t ℃、压力为H (mmHg )时,空气的比重:32731.2931/273760t H r xx kg m t =+ (2)湿空气的比重,还应考虑饱和水蒸气分压力(0.378ψ,P b )。

2.3 压力压力 这只是某一单位面积的力,如平方米上受1牛顿力度压力单位为1帕斯卡: 即:1pa = 1N/m 21Kpa = 1000pa = 0.01kg/cm 21Mpa = 106pa = 10kg/cm 2绝对压力 绝对压力是考虑到与完全真空或绝对零值相比,我们所居住的环境大气具有0.1Mpa 的绝对压力。

在海平面上,仪表压力加上0.1Mpa 的大气压力可得出绝对压力。

高度越高大气压力就越低。

大气压力 气压表是用于衡量大气的压力。

当加上仪表压力上就可得出绝对压力。

绝对压力=压力计压力+大气压力大气压力通常是以水银mm 为单位,但是任何一个压力单位都能作出同样很好的解释: 1个物理大气压力 = 760mmHg=10.33mH 2O=1.033kgf/cm2≌0.1Mpa.大气压同海拔高度的关系:0×P P =H (1-)5.256mmHg 44300(3)H ——海拔高度,P 0=大气压(0℃,760mmHg ) 2.4温度温度 温度是指衡量某一物质在某一时间能量水平的方法。

温度范围是根据水的冰点和沸点。

在摄氏温度计上,水的冰点为零度,沸点为100℃。

在华氏温度计上,水的冰点为32℉,沸点为212℉。

从华氏转换成摄氏:华氏 = 1.8℃+32, ℃=5/9(℉-32)绝对温度 这是用绝对零度作为基点来解释的温度。

基点零度为华氏零下459.67℉或摄氏零下273.15℃。

绝对零度是指从物质上除去所有的热量时所存在的温度或从理论上某一容积的气体缩到零时所存在的温度。

冷却温度差 冷却温度差是确定冷却器的效率的术语。

因为冷却器不可能达到100% 的效率,我们只能用冷却温差衡量冷却器的效率。

冷却温度差是进入冷却器的冷水或冷空气温度和压缩空气冷却后的温度之差。

2.5露点和相对湿度露点和相对湿度 就象晚上温度下降会产生露水一样,压缩空气系统内的温度下降也会产生水气。

露点就是当湿空气在水蒸气分压力不变的情况下冷却至饱和的温度。

这是为什么呢? 含有水分的空气只能容纳一定量的水分。

如果通过压力或冷却使体积缩小,就没有足够的空气来容纳所有的水分,因此多于的水分析出成为冷凝水。

离开后冷却器的空气通常是完全饱和的。

分离器内的冷凝水就显示了这一点,因此空气温度有任何的降低,就会产生冷凝水。

设定的湿度可认为是湿空气所含水蒸气的重量,即:水蒸气重量和干燥空气重量之比。

相对湿度ψ0z bP x x P -==-湿度Ψ饱和绝对温度 (4)当P s =0,ψ=0时,称为干空气;P s =P b ,ψ=1时,称为饱和空气。

绝对湿度——1m 3湿空气所含水蒸气的重量。

s G x V -=-水蒸气重量湿空气体积 =水蒸气重量含湿量干空气重量(5) 饱和空气 当没有再多的水气能容纳在空气中时,就产生了空气的饱和,任何加压或降温均会导致冷凝水的析出。

水气分离器 水气分离器是用于收集和除去在冷却过程中从空气或气体中冷凝出来水的 器件。

储气罐 储气罐是用于储存压缩机排放出来的压缩空气和气体的容器。

储气筒有利于消除排气管路中的脉冲,并在需求量大于压缩机的能力时,可起储存和补充提供压缩空气的作用。

2.6 状态及气量标准状态 标准状态的定义是:空气吸入压力为0.1Mpa ,温度为15.6℃(国内行业定义 是0℃)的状态下提供给用户系统的空气的容积。

如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。

常态空气 规定压力为0.1Mpa 、温度为20℃、相对湿度为36%状态下的空气为常态空气。

常态空气与标准空气不同在于温度并含有水分。

当空气中有水气,一旦把水气分离掉,气量将有所降低。

海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。

海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。

既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。

EP200 标准机组的最大容许运行海拔高度为2286m 。

影响排气量的因素:首先是设计因素:转子直径、转子长度;其次是运行因素:P(压力)、T (温度)、海拔高度、n (转速)、V (余隙容积)、泄漏等。

海拔高度对压缩机的影响:海拔越高,空气越稀薄,绝压越低,压比越高,N d 越大;冷却效果也就越差,电机温升越大;柴油机的油气比越大,N 越小。

容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。

用单位:m 3/min (立方米/分)表示。

标方用Nm 3/min 表示。

1CFM=0.02832m 3/min, 或者 1m 3/min=35.311CFM,S--标准状态,A--实际状态2.7 功率及比功率 (能耗比、容积比能)2.7.1压缩机效率容积效率是压缩机的实际气量和理论气量容积之比,用百分比表示。

压缩效率是压缩给定量气体实际所需的功率与理论功率之比。

理论功率可按等温工况或绝热工况来计算。

相应的压缩效率可用百分比来确定和表示。

就蒸汽驱动或内燃机驱动的压缩机而言,机械效率是指压缩机的指示功分马力和在轴上的制动分马力之比。

就电动机驱动的压缩机而言,机械效率是指压缩气缸内的指示功率同压缩机的轴功率之比。

用百分比来表示。

2.7.2总体效率(η=0.85)总体效率是压缩机的压缩效率和机械效率的总和。

相关主题