当前位置:文档之家› 第三章 静电场边值关系

第三章 静电场边值关系


电位所满足的拉普拉斯方程在圆柱坐标系
中的展开式只剩下包含变量r 的一项,即电 位微分方程为
2 1 d d r 0 r dr dr
求得
C1 ln r C 2
利用边界条件:
V r a
C1 ln a C 2 V C1 ln b C 2 0
q q 4 π r 4 π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
r q q r
上任一点均具有同一数值。由上图可见,若要求三角形 △OPq
r 为了使镜像电荷具有一个确定的值,必须要求比值 对于球面 r
r a 与 △ OqP 相似,则 常数。由此获知镜像电荷应为 r f
代入上述边界条ห้องสมุดไป่ตู้,求得镜像电荷如下:
q
1 2 q 1 2
q
2 2 q 1 2
例 已知同轴线的内导体半径为a,电位为V,外导体接地,其
内半径为b。试求内外导体之间的电位分布函数以及电场强度。

V a b
O
对于这种边值问题,镜像法不适
用,只好求解电位方程。为此,选用圆柱 坐标系。由于场量仅与坐标 r 有关,因此,
以格林函数表示的积分解。
数学物理方程是描述物理量随空间和时间的变化规律。对于某 一特定的区域和时刻,方程的解取决于物理量的初始值与边界值, 这些初始值和边界值分别称为初始条件和边界条件,两者又统称为 该方程的定解条件。静电场的场量与时间无关,因此电位所满足的 泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界 条件求解空间任一点的电位就是静电场的边值问题。
q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半
部分完全相同。
z

电场线
等位线
由此可见,电场线处处垂直于导体平面,而零电位面与导体
表面吻合。
电荷守恒:当点电荷 q 位于无限大的导体平面附近时,导体表 面将产生异性的感应电荷,因此,上半空间的电场取决于原先的点 电荷及导体表面上的感应电荷。可见,上述镜像法的实质是以一个 异性的镜像点电荷代替导体表面上异性的感应电荷的作用。根据电 荷守恒原理,镜像点电荷的电量应该等于这些感应电荷的总电量,
第三章 静电场
主 要 内 容 电位微分方程,镜像法,分离变量法。
1. 电位微分方程
已知,电位 与电场强度 E 的关系为
E
对上式两边取散度,得
E 2
对于线性各向同性的均匀介质,电场强度 E 的散度为
E

那么,线性各向同性的均匀介质中,电位满足的微分方程式为
1 d 2 X 1 d 2Y 1 d 2 Z 0 2 2 2 X dx Y dy Z dz 显然,式中各项仅与一个变量有关。因此,将上式对变量 x 求导,第
二项及第三项均为零,求得第一项对 x 的导数为零,说明了第一项等 于常数。同理,再分别对变量 y 及 z 求导,得知第二项及第三项也分
对于无限大的自由空间,表面 S 趋向无限远处,由于格林函数
G0 (r , r ) 及电位 均与距离成反比,而 dS 与距离平方成正比,所以,
对无限远处的 S 表面,上式中的面积分为零。 若 V 为无源区,那么上式中的体积分为零。因此,第二项面积 分可以认为是泊松方程在无源区中的解,或者认为是拉普拉斯方程
镜像电荷 l 。已知无限长线电荷产生的电场强度为
E
l er 2π r
因此,离线电荷r 处,以 r0 为参考点的电位为

r r0
Edr
l r0 ln 2π r
若令镜像线电荷 l 产生的电位也取相同的 r0 作为参考点, 则 l 及 l 在圆柱面上 P 点共同产生的电位为
通常给定的边界条件有三种类型:
第一类边界条件给定的是边界上的物理量,这种边值问题又称 为狄利克雷问题。
第二类边界条件是给定边界上物理量的法向导数值,这种边值 问题又称为诺依曼问题。
第三类边界条件是给定一部分边界上的物理量及另一部分边界 上物理量的法向导数值,这种边界条件又称为混合边界条件。
对于任何数学物理方程需要研究解的存在、稳定及惟一性问题。 解的存在是指在给定的定解条件下,方程是否有解。 解的稳定性是指当定解条件发生微小变化时,所求得的解是否会 发生很大的变化。 解的惟一性是指在给定的定解条件下所求得的解是否惟一。
读者可以根据导体表面电荷密度与电场强度或电位的关系证明这个
结论。 半空间等效:上述等效性仅对于导体平面的上半空间成立,因
为在上半空间中,源及边界条件未变。
对于半无限大导体平面形成的劈形边界也可应用镜像法。但是
仅当这种导体劈的夹角等于 的整数分之一时,才可求出其镜像电 荷。为了保证这种劈形边界的电位为零,必须引入几个镜像电荷。 π 例如,夹角为 的导电劈需引入 5 个镜像电荷。 3
2
该方程称为泊松方程。 对于无源区,上式变为

2 0
上式称为拉普拉斯方程。
泊松方程的求解。 已知分布在V 中的电荷 (r ) 在无限大的自由空间产生的 电位为 1 (r ) (r ) V | r r |dV 4π
因此,上式就是电位微分方程在自由空间的解。
q q
显然,为了保证球面边界是一个等位面,镜像电荷 q“ 必须
位于球心。事实上,由于导体球不接地,因此,其电位不等零。
由q 及q‘在球面边界上形成的电位为零,因此必须引入第二个镜像 电荷q“ 以提供一定的电位。
(3)线电荷与带电的导体圆柱。
P a O d f -l r
l
在圆柱轴线与线电荷之间,离轴线的距离d 处,平行放臵一根
r
r
f
a
a2 d f
(4)点电荷与无限大的介质平面。
q
q et en
En
r0
E'
E t Et
q"
1 2
=
1 1
q'
r0
En

+
2 2
r0
E t
E"
E
E n
为了求解上半空间的场可用镜像电荷 q' 等效边界上束缚 电荷的作用,将整个空间变为介电常数为1 的均匀空间。对于 下半空间,可用位于原点电荷处的q" 等效原来的点电荷q 与边 界上束缚电荷的共同作用,将整个空间变为介电常数为2 的均
P l r0 l r0 ln ln 2π r 2π r

l r ln 2π r
已知导体圆柱是一个等位体,因此,为了满足这个边界条件,
必须要求比值 r 为常数。与前同理,可令 r a d ,由此得
应用格林函数 G(r , r ),即可求出泊松方程的通解为
(r ) G0 (r , r )
V

S
( r ) dV [G0 (r , r ) (r ) (r )G0 (r , r )] dS
式中格林函数 G(r , r )为
G0 (r , r ) 1 4π | r r |
0 rb
求得
C1
V a ln b
C2
V ln b a ln b
最后求得
V ln ln b b
ˆ r V ˆ E r r r a ln b
2 2 k x k y k z2 0
由上可见,经过变量分离后,三维偏微分方程式被简化为三个一
维常微分方程。常微分方程的求解较为简便,而且三个常微分方 程又具有同一结构,因此它们解的形式也一定相同。例如,含变
P a O
r
q q
q
d
a q f
f
镜像电荷离球心的距离d 应为
a2 d f
这样,根据 q 及 q' 即可计算球外空间任一点的电场强度。
若导体球不接地,则位于点电荷一侧的导体球表面上的感应电 荷为负值,而另一侧表面上的感应电荷为正值。导体球表面上总的 感应电荷应为零值。因此,对于不接地的导体球,若引入上述的镜 像电荷 q' 后,为了满足电荷守恒原理,必须再引入一个镜像电荷q", 且必须令
(1)点电荷与无限大的导体平面。
P r q r q h h q P
介质
导体
r
介质 介质
以一个处于镜像位臵的点电荷代替边界的影响,使整个空间 变成均匀的介电常数为 的空间,则空间任一点 P 的电位由 q 及 q' 共同产生,即
q q 4 π r 4 π r
考虑到无限大导体平面的电位为零,求得
静电场是客观存在的,因此电位微分方程解的存在确信无疑。
由于实际中定解条件是由实验得到的,不可能取得精确的真值, 因此,解的稳定性具有重要的实际意义。 泊松方程及拉普拉斯方程解的稳定性在数学中已经得到证明。 可以证明电位微分方程解也是惟一的。
静电场的边界通常是由导体形成的。此时,若给定导体上的 电位值就是第一类边界。 已知导体表面上的电荷密度与电位导

r
a
由上例可见,为了利用给定的边界条件以便确定求解过程
中出现的积分常数,选择适当的坐标系是非常重要的。对于平 面边界,圆柱边界及圆球边界必须分别选用直角坐标系、圆柱
坐标系及球坐标系。
此外,由于同轴线中的电位函数仅与一个坐标变量 r 有关, 因此原先的三维拉普拉斯方程简化为一维微分方程,因而可采 用直接积分方法求解这类边值问题。但一般说来,静电场的边 值问题与空间三个坐标变量有关。为了求解三维拉普拉斯方程, 一种有效的方法就是分离变量法。 分离变量法是将原先的三维偏微分方程通过变量分离简化 为三个独立的常微分方程,从而使求解过程比较简便。分离变
相关主题