光的干涉 知识点总结
鉴于 0,L0是决定光场纵向相干性的特征量,人们称 0为相干时间(coherent time) L0为相干长度(coherentlength) 光场中这类相干性称为时间相干性 (temporal coherence)
光场的空间相干性
光场的空间相干性是指在光源照明空间中横向任意两点位置处的光场U~1 和U~2 之间的相干
I 0(1
sin v v
cos k0L)
其中
v
k 2
L
则
(L) sin v
sin
k 2
L
k
第一次出现 此时 求得
0时的光程差称为最大光 程差LM k L / 2
LM =2 / k 2 /
准单色光持续发光时间有限,因而发射的波列长度是有限的,相邻波列之间相位关系是随机
的。
L0 c 0
(5)干涉条纹间距公式
由 I(x ,y )
I 0(1
cos(k
d D
x )),k
d D
x
2
d D
x
2j
得 x j
j
D d
条纹间距:
e
(j
1)
D d
j
D d
D d
(6) 干涉条纹的物理意义: 光程差
r2 r1 m
时
亮条纹;
r2
r1
(m
1 2
)
时
暗条纹;
物理意义:
1、干涉条纹代表着光程差的等值线。
分波前干涉(将波前先分割再叠加,叠加广场来自同波源具有相同初始位相) 分振幅干涉(将光的能量分为几部分,参与叠加的光波来自同一波列,保证相位差 稳定) 杨氏双孔干涉实验:两个球面波的干涉 (1) 杨氏双孔干涉实验装置及其历史意义
(2) 光程差分析(要会推导)
X (x,y)
Z
(P )
10(P ,t ) 20(P ,t )
光源极限宽度
b0
R d
同理,给定b下,
3 双面孔光极限 源间 照隔 明时d0的部Rb分相干场
(1) 计算思路
与 2 接近,只是将线积分改为面积分。
(2) 方孔光源
I(x ,y ) I 0(1
sin u
u
,
sin f0b
f0b u f0b
cos 2fx d
R
) b
与线光源照明时形式一样,区别在于方孔时常数项 I0=B(ab),线光源时,I0=Bb
相干条件:
cos(k2 k1) r (20 10 ) (2 1)t }
E10 E20 0
(干涉项不为零)
( (
2 1
(为了获得稳定的叠加分布)
20 10 常数 (为了使干涉场强不随时间变化)
干涉场的衬比度
1.两束平行光的干涉场(学会推导)
12( (1)两束平行光的干涉场
) )3
) 干涉场强分布:
I x, y U1(x, y) U2 (x, y)
*
U1(x, y) U2 (x, y)
I1 I2 2 I1I2 cos
U1
(
x,
x,
y)
y
Ak1esiiknsin11xs1i0n
2U
2xx,
y 20A21e0 i
k
sin2
x20
亮度最大值处:
亮度最小值处:
条纹间距公式
(3) 圆盘光源
积分不能得到解析式
圆盘光源极限直径:
b0
1.10
R d
光场的时间相干性
1.谱线宽度
光源有一定谱线宽度是光源发光的断续性造成的。
假设某一微观粒子辐射出的光波复振幅可表示为:
E(t)
exp(i0t),
E(t) 0
t 22 其他时间
则广播强度随频率的分布:
i()
g()
2
4sin2 ( 0 )
2
(x, y) k sin1 sin2 x 20
分波前干涉 普通光源实现相干叠加的方法 (1)普通光源特性
• 发光断续性 • 相位无序性 • 各点源发光的独立性 根源:微观上持续发光时间τ0 有限。 如果τ0 无限,则波列无限长,初相位单一,振幅单一,偏振方向单一。这就是理想单色光。 (2)两种方法
个谱线输出。
2.光学薄膜的制作
BY Luo
此图说明零件表面有凹陷。 3) 牛顿环法测量镜面曲率半径和表面形状误差。
轻压标准模板,可以观察条纹的吞吐,如果条纹扩大,则需研磨中央,否则研磨两边。 (4) 扩展光源照明下等厚干涉条纹的特点。 扩展光源各点源形成的干涉条纹不重合,所以扩展光源照明下等厚干涉条纹衬比度下降。 几种分振幅干涉仪及其应用。 重点掌握 Michelson 干涉仪
2
(R 2
R1)
2
(r2
r1)
由 r12
(x
d )2 2
y2
D 2,
r22
(x
d )2 2
y2
D2
得 r22 r12 2xd
由 r22 r12 (r2 r1 )(r2 r1 ), r22 r12 2xd
得 r2
r1
2 xd r2 r1
2 xd 2D
dx D
程度,其相干程度是由光源本身的性质决定的,可以通过干涉场的衬比度 来定量描述U~1 和
U~2 之间的相干程度。
(1)相干孔径角:
d0
R , b
定义相干孔径角0
d0 , R
则 b 0
(3) 以孔径角表示衬比度的形式:
== sin f0b sinc( )
f0b
0
(4) 相干面积
空间相干范围是由 0旋转而成的空间立体角
结论: 1、低反射率情况下,多光束干涉与双光束干涉接近。 2、高反射率情况下,透射多光束接近
透射多光束干涉场
U~T ( )
U~' j
j 1
U~ T
(
)=
1
1 R Rei
A0
干涉场强
IT ( )
U~T
U~ *T
1
I0 4R (1 R)2
s in 2
2
其中,R为光强反射率, R r 2
(4) 非近轴近似下的干涉条纹分布
I(x ,y ) I0(1 cos (x ,y ))
(P )
2
r2
r1
j 2 ,
干涉相长
(P )
2
r2
r1
(2j
1) ,
干涉相消
亮条纹和暗条纹在空间形成一系列双叶旋转双曲面。在平面接收屏上为一组双曲线,明暗交
错分布。干涉条纹为非定域的,空间各处均可见到。
第二章 光的干涉 知识点总结
光的干涉现象 两束(或多束)光在相遇的区域内产生相干叠加,各点的光强不同于各光波单独作用所产生的 光强之和,形成稳定的明暗交替或彩色条纹的现象,称为光的干涉现象。 干涉原理 注:波的叠加原理和独立性原理成立于线性介质中,本书主要讨论的就是线性介质中的情况. (1)光波的独立传播原理 当两列波或多列波在同一波场中传播时,每一列波的传播方式都不因其他波的存在而受到影 响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等) (2)光波的叠加原理 在两列或多列波的交叠区域,波场中某点的振动等于各个波单独存在时在该点所产生振动之 和。 波叠加例子用到的数学技巧:
空间频率:
(2)定义
衬比度 (I M I m ) (I M I m )
以参与相干叠加的两个光场参数表示:
2 I1I 2 I1 I2
衬比度的物理意义
1.光强起伏
I(r) I0 1 cos (r)
2.相干度
1 完全相干 0 完全非相干
0 1 部分相干
2A1
A2
1
A1
A2
。
并且有 dI(x ,y ) B(1 cos(2fx 2f0x0 ))dx0
ii 对整个线光源积分:
b/2
b/2
I (x, y) dI B(1 cos(2fx 2f0 x0 )dx0
b / 2
b / 2
(2) 衬比度变化:
sin f0b f0b
sin u u
当u 时,对给定的d下,b R ,此时=0 d
(1) 计算思路:
i 先分别求出两点光源在观察屏上的光强分布,关键是找到关系式x
D R
x0 。
ii 然后根据
算得各点光源在观察屏上的光强分布 iii 由于两点光源非相干,所以总的光强分布可以直接由两者场强相加得到。 (2)衬比度变化
2 线光源照明时的部分相干场 (1) 计算思路:
i 用到 1 中结论,
( P)
10 (P, t) 20 (P, t)
2
( R2
R1)
2
(r2
r1)
当 Q 位于Z轴上时,R =R 则
1 2,
(x, y) k d x,
D
k 2
(3)干涉条纹分布
I(x ,y ) I0(1 cos (x ,y ))
I(x,y )
I0(1
cos(k
d D
x ))
(1)光程差:
L0(P)
n(
AB
BP)
Hale Waihona Puke CP2nh cos i
1 sin2 i
L0(P) 2nh cosi
一般采用垂直入射:
L0(P ) 2nh
(2)等厚干涉条纹主要特点: i、表面条纹形状与楔形板或薄膜的等厚线是一致的。
由
2nh
j0
h
0 2n
ii、相邻两个亮条纹对应点处的楔形板厚度差值。 (3) 等厚干涉条纹的应用 1) 测量细丝直径 2) 测量机械零件表面粗糙度