各类飞机引擎原理飞机引擎飞机引擎飞机引擎的发动原理前言汽车在高速公路上定速行驶於平坦路面上所消耗的汽油,主要都是用来克服空气阻力。
在空中飞行的飞机同样承受阻力,因此飞机必须有「推进系统」,否则阻力将使飞机愈来愈慢终至坠毁。
飞机的推进系统常见的有「往复式内燃机」和「涡轮引擎」二类。
「往复式内燃机」是最传统的飞机动力源,莱特兄弟的第一架飞机就是采用四冲程的内燃机。
通常是使用螺旋桨把往复式内燃机的输出马力转变成推进力。
「涡轮引擎」可分为:「涡轮喷射」、「涡轮扇喷射」和「涡轮轴引擎」三大类。
往复式内燃机和汽车、机车使用者的原理相同,除了模型飞机之外,绝少使用二冲程引擎者。
四冲程引擎分为进气、压缩、爆炸、排气四个冲程,其原理在今日已成常识,不多说明。
「涡轮引擎」由前面吸入空气,经由压缩器增压之后,即将油与气混合并於燃烧室引燃。
燃烧后的高温排气流经涡轮产生转动的力量,此力量经过传动轴去驱动压缩器。
此时排气仍含有甚多热能,即经由喷嘴高速喷出,依反作用定律产生推力。
上述为「涡轮喷射引擎」。
扇式喷射是把压缩器或涡轮叶片延长成为类似较短的螺旋桨叶片。
压缩器叶片延长者叫作前扇式,涡轮叶片延长者叫作后扇式。
一般活塞式燃油引擎强劲的动力和雄浑的引擎声,简直魅力没法挡!与实物相同的机构和工作原理造成强劲转动的模型发动机(俗称模型引擎),它本身可以说是模型爱好者梦寐以求的东西。
事实上,翻开无线电遥控模型的历史,可知机动模型的出现要早过电动模型,强劲的动力打破了传统模型那种冷漠的面孔,为模型的发展注入新的生命力。
再者,燃油之消耗可由目测判断,它与电动模型不同,操纵者能正确估计模型之正确动作时间,燃油用完後只需加油,模型又能重新奔驰或飞翔。
总之,机动模型予人明快,爽朗的印象。
如上图所示:无线电遥控模型用的发动机与实物一样,既有2冲程发动机,也有4冲程发动机,甚至还有转子发动机和喷射发动机。
因为零件配换等问题,建议采用2冲程或4冲程的电热式发动机(glow engine),电热式发动机不需要复杂的电气机构,具有简单,轻量,易用等优点;而且又能提供强大的动力,所以成为机动模型的最佳动力源。
实际上,它的转速超过每分钟30,00转,如其排气量作公升换算,相当於输出200匹马力以上的动力,功率之强劲令人咋舌!其原因是由於采取电热(glow)方式,仅仅在起动时让电热塞通电以产生最初的爆发,此後使可截断电池的供电,利用自身之压缩产生连续爆发力旋转。
在现实生活中、渔船等场合所采用的发动机,其工作原理便与它相同。
利用压缩引起爆发的情况,我们在柴油发动机中也可以看到。
但两者其实是有一些不同的。
对柴油发动机来说,系利用压缩热引起燃油混合气本身的爆发,但对电热式发动机来说,最初系由电热塞引起爆发,此后则利用自身压缩所产生的热量,对混合气体进行点火和使之爆发。
发动机等级和排气量表示发动机级的数字,是以立方英寸为基础制定的。
这是在遥控模型发展早期,由美国模型界人士订定。
如10级:其为O.l0立方英寸。
发动机旋转原理以下筒单介绍使用率最高的2冲程引擎的动作顺序。
所谓2冲程,是指吸入一压缩—曝发一排气这一连串过程在活塞做上下运动这二个行程里面.起动所需要的物件1燃油2加热电热塞用电池3兼起燃油泵作用的挤压泵(既可用来向油箱往油:也可以在起动时向化油器滴油的客器)4导线(电热塞通电用导线)5电热塞扳手(用来拧紧电热塞及在轴上安装螺旋桨,离合器之用)燃油包含哪些成份?为配合电热式发动机的动作原理,选择合适的成份,调配而成为电热燃油。
它的主要成份甲醇扮演燃烧的主要角色。
它的发火点必须与电热塞的发热和压缩热相一致,并保证具有高的燃烧效率。
此外,它还包含作为润滑剂的油份和硝基甲烷等添加助剂。
硝基甲烷......3%-30%蓖麻油.......20%-30%甲醇.........50%-80%二、冲压喷气发动机:冲压喷气发动机的诞生早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。
但当时没有相应的助推手段和相应材料,只停留在纸面上。
1928年,德国人保罗·施米特开始设计冲压式喷气发动机。
最初研制出的冲压发动机寿命短、振动大,根本无法在载人飞机上使用。
于是1934年时,施米特和G·马德林提出了以冲压发动机为动力的“飞行炸弹”,于1939年完成了原型。
后来这一设计就产生了纳粹德国的V-1巡航导弹。
此外纳粹德国还曾试图将冲压喷气发动机用在战斗机上。
1941年,特劳恩飞机实验所主任、物理学家欧根·森格尔博士在吕内堡野外进行了该类型发动机的试验,但最终未能产生具有实用意义的发动机型号。
二战后冲压发动机得到了极大的发展,为多种的无人机、导弹等采用。
冲压喷气发动机的原理冲压喷气发动机的核心在于“冲压”两字。
冲压发动机由进气道(也称扩压器)、燃烧室、推进喷管三部组成,比涡轮喷气发动机简单得多。
冲压是利用迎面气流进入发动机后减速、提高静压的过程。
这一过程不需要高速旋转的复杂的压气机,是冲压喷气发动机最大的优势所在。
进气速度为3倍音速时,理论上可使空气压力提高37倍,效率很高。
高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧。
燃烧后温度为2000一2200℃,甚至更高,经膨胀加速,由喷口高速排出,产生推力。
因此,冲压发动机的推力与进气速度有关。
以3倍音速进气时,在地面产生的静推力可高达2OO千牛。
冲压喷气发动机目前分为亚音速、超音速、高超音速三类。
亚音速冲压发动机以航空煤油为燃料,采用扩散形进气道和收敛形喷管,飞行时增压比不超过1.89。
马赫数小于O.5时一般无法工作。
超音速冲压发动机采用超音速进气道,燃烧室入口为亚音速气流,采用收敛形或收敛扩散形喷管。
用航空煤油或烃类作为燃料。
推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹。
高超音速冲压发动机使用碳氢燃料或液氢燃料,是一种新颖的发动机,飞行马赫数高达5~16。
目前尚处于研制阶段。
前两类发动机统称为亚音速冲压发动机,最后一种称为超音速冲压发动机。
冲压喷气发动机原理图冲压喷气发动机与其他推进方式结合后,衍生了多种有特色的发动机,如火箭/冲压组合发动机、整体式火箭冲压发动机等。
下图为火箭/冲压组合发动机原理图:冲压喷气发动机的优缺点冲压发动机的优势在于构造简单、重量轻、体积小、推重比大、成本低。
简单的说就是一个带燃油喷嘴和和点火装置的筒子。
因此常用于无人机、靶机、导弹等低成本或一次性的飞行器。
同时由于推重比远大于其他类型的喷气发动机,非常适合驱动高超音速飞行器,如空天飞机、先进反舰导弹等。
但冲压发动机没有压气机,就不能在地面静止情况下启动,所以不适合作为普通飞机的动力装置。
通常的解决方法是增加一个助推器,使飞行器获得一定的飞行速度,然后再启动冲压发动机。
最常见的助推器为火箭发动机。
此外也可由其他飞行器挂载仅装有冲压发动机的飞行器,飞行到一定速度后,再将仅用冲压发动机的飞行器投放。
三、涡轮风扇喷气发动机涡轮风扇喷气发动机的诞生二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。
尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。
涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。
因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。
实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。
40和50年代,早期涡扇发动机开始了试验。
但由于对风扇叶片设计制造的要求非常高。
因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。
50年代,美国的NACA(即美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。
55到56年研究成果转由通用电气公司(GE)继续深入发展。
GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。
但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt&Whitney)公司的JT3D涡扇发动机。
实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。
7077 1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音70大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。
60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。
此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。
涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。
因此必需提高喷气发动机的效率。
发动机的效率包括热效率和推进效率两个部分。
提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。
因为高温、高密度的气体包含的能量要大。
但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。
而流速快的气体在排出时动能损失大。
因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。
要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。
涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。
涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。
风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。
因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。
这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。
这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。
效率高就意味着油耗低,飞机航程变得更远。
加力式涡扇发动机不加力式涡扇发动机涡轮风扇喷气发动机的优缺点如前所述,涡扇发动机效率高,油耗低,飞机的航程就远。
但涡扇发动机技术复杂,尤其是如何将风扇吸入的气流正确的分配给外涵道和内涵道,是极大的技术难题。
因此只有少数国家能研制出涡轮风扇发动机,中国至今未有批量实用化的国产涡扇发动机。
涡扇发动机价格相对高昂,不适于要求价格低廉的航空器使用。
四、涡轮喷气发动机涡轮喷气发动机的诞生二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。
但到了三十年代末,航空技术的发展使得这一组合达到了极限。
螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。