当前位置:文档之家› 基于MATLAB的图像压缩处理技术的研究与实现毕业设计

基于MATLAB的图像压缩处理技术的研究与实现毕业设计

基于MATLAB的图像压缩处理技术的研究与实现毕业设计目录第一部分毕业论文一、毕业论文第二部分外文资料翻译一、外文资料原文二、外文资料翻译第三部分过程管理资料一、毕业设计(论文)课题任务书二、本科毕业设计(论文)开题报告三、本科毕业设计(论文)中期报告四、毕业设计(论文)指导教师评阅表五、毕业设计(论文)评阅教师评阅表六、毕业设计(论文)答辩评审表2009 届本科生毕业设计(论文)资料第一部分毕业论文-(2009 届)本科生毕业论文基于MATLAB的图像压缩处理技术的研究与实现2009 年6 月长沙学院本科生毕业论文基于MATLAB的图像压缩处理技术的研究与实现系部:电子与通信工程系专业:通信工程学号:2005043204学生姓名:马娟指导教师:刘光灿教授王路露助教2009 年6月目录摘要................................................................................. 错误!未定义书签。

ABSTRACT ........................................................................ 错误!未定义书签。

第1章绪论 (1)1.1 论文研究背景及意义 (1)1.2 图像压缩技术的历史与现状 (1)1.3 离散余弦变换及其在图象压缩中的应用 (2)1.4 论文研究的主要内容 (2)第2章图像压缩的基本原理 (4)2.1 图象压缩评价标准 (4)2.1.1 客观标准 (4)2.1.2 主观标准 (5)2.2 图像压缩技术标准 (5)2.3 图像压缩的分类 (8)2.4 图像压缩处理技术基本理论 (9)2.4.1 图像压缩的基本原理 (9)2.4.2 图像压缩的基本模型 (10)第3章离散余弦变换的MATLAB实现 (12)3.1 MATLAB图像处理工具箱 (12)3.2 离散余弦变换的定义 (12)3.3 离散余弦变换的基本原理与算法 (13)3.3.1 离散余弦变换的基本原理 (13)3.3.2 离散余弦变换算法 (15)3.4 离散余弦算法的实现 (15)第4章离散余弦变换的界面实现 (17)4.1 图形用户界面简介 (17)4.2 界面设计的MATLAB实现 (17)4.2.1 界面设计总体概述 (17)4.2.2 界面设计具体实现 (18)第5章运行结果显示及分析 (20)5.1 离散余弦变换的算法实现 (20)5.1 离散余弦变换的界面实现 (20)5.5 设计过程中的疑难及改进 (22)结论 (23)参考文献 (24)附录 (25)致谢................................................................................. 错误!未定义书签。

第1章绪论1.1论文研究背景及意义人们在自然界中感受到的最重要的信息就是图像信息,随着多媒体技术和通讯技术的日益发展,图像也成为了信息技术所处理的重要对象。

近些年来,图像技术发展十分迅速,这也推动了多媒体娱乐、多媒体通信、数码相机、数码摄像头和高清晰度电视等各类与图片和视频相关的产品的发展。

图像信息的数据量非常的大,随着各种成像设备的分辨率的不断提高,单幅图像所包含的数据量也越来越大,大数据量的图像信息会给存储器的存储容量、通信信道的带宽以及计算机的处理速度增加极大的压力。

为了解决这个问题,必须对图像进行压缩处理。

数字图像压缩编码的目的就是要以尽可能少的比特数来表征图像,同时保持恢复图像的质量,对图像编码和解码算法的研究,己经受到人们越来越多的关注,成为近些年信息技术中的热点。

1.2图像压缩技术的历史与现状图像压缩编码技术始于二十世纪四十年代末的电视信号数字化,至今己有将近六十年的历史。

在这几十年的时间内,出现了大量的图像压缩方法和理论M.Kunt将图像压缩的编码理论及方法分为两代:传统的压缩编码方法和新型图像编码方法。

传统编码技术包括脉码调制、量化法、熵编码、预测编码、变换编码、矢量编码等十余种编码方法。

然而随着人们对这些传统编码方法的深入应用,也逐渐发现了这些方法的许多缺点:比如在传统的编码方法中由于正交变换时频局域性很差,变换后的系数失去了对原图像精细结构的描述,从变换图像得不到原图像边缘轮廓等局部信息,因此,在量化编码时无法采用特殊方法;高压缩比时它还导致图像的边缘轮廓模糊显现和出现严重的方块效应;而且人类视觉系统(Humna Visual Sysetm,即HVS)的特性也不易被引入到压缩算法中。

这些缺点使得它们不适应于需要较高压缩比的应用场合。

80年代中后期,人们结合模式识别、计算机图形学、计算机视觉、神经网络、小波分析和分形几何等理论,开始探索图像信号压缩编码的新途径。

同时考虑到人类的视觉心理特性,新型图像压缩编码方法相继提出:M.Kuni于1985年提出基于人眼视觉特性的第二代图像编码技术,1988年M.Barnsley提出基于迭代函数系统的分形图像编码技术,以及90年代初发展起来的基于模型的图像编码方法。

其中离散余弦变换不仅是现在研究的热点,而且这方面的编码也取得了一些引人注目的成功。

如离散余弦变换技术己经作为联合图像专家组新的图像压缩标准JPEG2000的核心技术[1]。

1.3离散余弦变换及其在图象压缩中的应用离散余弦变换(DCT for Discrete Cosine Transform)是与傅里叶变换相关的一种变换,它类似于离散傅里叶变换(DFT for Discrete Fourier Transform),但是只使用实数。

离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位。

有两个相关的变换,一个是离散正弦变换(DST for Discrete Sine Transform),它相当于一个长度大概是它两倍的实奇函数的离散傅里叶变换;另一个是改进的离散余弦变换(MDCT for Modified Discrete Cosine Transform),它相当于对交叠的数据进行离散余弦变换。

离散余弦变换,尤其是它的第二种类型,经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。

这是由于离散余弦变换具有很强的“能量集中”特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近马尔科夫过程(Markov processes)的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève变换——它具有最优的去相关性)的性能。

例如,在静止图像编码标准JPEG中,在运动图像编码标准JPEG和MPEG的各个标准中都使用了离散余弦变换。

在这些标准制中都使用了二维的第二种类型离散余弦变换,并将结果进行量化之后进行熵编码。

这时对应第二种类型离散余弦变换中的n通常是8,并用该公式对每个8×8块的每行进行变换,然后每列进行变换,得到的是一个8×8的变换系数矩阵。

其中(0,0)位置的元素就是直流分量,矩阵中的其他元素根据其位置表示不同频率的交流分类[2]。

1.4论文研究的主要内容本文主要研究如何利用MATLAB软件开发一个基于离散余弦算法的图像压缩处理界面,为初学者提供一个图像压缩处理技术的DCT算法演示及模拟开发的Graphical User Interface(图形用户界面)平台,供大家学习并研究图像压缩处理的技术方法。

本文的主要内容如下:第一章是绪论部分,介绍了论文的研究背景和意义,并简要介绍了图象压缩技术的历史与现状以及离散余弦变换在图像压缩中的应用,概述了本论文的主要研究工作;第二章介绍了图象压缩技术的基本理论知识,包括图象压缩的评价标准、技术标准及分类,论述了图像压缩的基本原理和基本模型;第三章介绍了离散余弦变换的MATLAB实现,简单介绍了MATLAB的图像处理工具箱,然后介绍了离散余弦变换的基本原理和算法,最后实现了离散余弦变换的图像压缩实现;第四章介绍了离散余弦变换的界面实现,简单介绍了图形用户界面的功能,论述了本设计采用MATLAB程序进行图像压缩界面操作的实现过程;第五章显示了利用离散余弦变换的算法实现和界面实现的运行结果,并概述了在设计过程中的疑难及改进;最后是对全文的总结,提出了需要进一步解决的问题及改进方向。

第2章 图像压缩的基本原理数字图像从表面上看可以表达丰富多彩的内容,但实质上可以看作在视觉空间灵敏度范围内对图像进行空间采样的一个个像素组成,每个象素点都可以用一组一维或多维的数字来表示,如nbit 的灰度图像的每个象素由0~2n ~l 之间的某个数值来表示,而真彩色图像的象素值则由红(R),绿(G),蓝(B)三种颜色的值来联合表示。

由于图像采集设备的迅速发展,图像的尺寸和分辨率不断提高,导致了图像数据量变得非常大,例如,一幅单色数字卫星遥感图像由10,000×10,000个像素(pixel)组成,如果每个像素的灰度用12bit 表示,那么这幅图像就要用1.2GB 表示。

直接存储和传输如此庞大的数据,不仅要消耗巨大的磁盘空间和网络带宽而且还会极大地增加处理器的负担,因此对图像进行大幅度的数据压缩就显得尤为重要[3]。

2.1图象压缩评价标准对图像进行压缩,不可避免的要引入失真。

我们要做的就是在图像信号的最终用户觉察不出或能够忍受这些失真的前提下,进一步提高压缩比,以换取更高的编码效率。

这就需要引入一些失真的测度来评估重建图像的质量。

重建图像的质量评价标准可分为客观标准和主观标准两种。

通过这些标准可以比较各种方法的优劣[1]。

2.1.1客观标准假设原始图像表示A=f(i,j),其中i=l,2,…M ;j=1,2,…N ,经压缩解压后的图像为A ’=f ’(i,j),i=1,2,…M ;j=1,2,…N ,可以用下列指标进行评价:(1)均方误差MSN(2.1) (2)规范化均方误差NMSN (2.2)其中 (3)对数信噪比SNR(2.3)(4)峰值信噪比PSNR()2211,M N f i j MN f i j δ===⎡⎤⎣⎦∑∑[]2111(,)'(,)M N i n MSN f i j f i j MN ===-∑∑2f MSN NMSN δ=210lg10lg f SNR NMSN MSN δ==-(2.4)评价图像压缩效果的另外一个重要指标是压缩比C ,它指的是表示原始图像每象素的比特数同压缩后平均每象素的比特数的比值,也常用每象素比特值(bpp)来表示压缩效果。

相关主题