当前位置:文档之家› 基于IGBT的降压斩波电路

基于IGBT的降压斩波电路

1 引言随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。

电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。

开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。

直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到了广泛的应用。

直流电动机的启动和调速性能、过载能力强等特点显得十分重要。

计算机在控制领域和高开关频率、全控型第二代电力半导体器件的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。

直流电动机转速的控制方法可分励磁控制法与电枢电压控制法两类。

励磁控制法控制磁通,其控制功率虽然小,但低速时受到磁饱和的限制,高速时受到换向火花和换向器结构强度的限制;而且由于励磁线圈电感较大,动态响应较差。

所以常用的控制方法是改变电枢端电压调速的电枢电压控制法,调节电阻即可改变端电压,达到调速目的。

但这种传统的调压调速方法效率低。

目前,市场上用的最多的IGBT直流斩波器,它是属于全控型斩波器,它的主导器件采用国际上先进的电力电子器件IGBT,由门极电压控制,从根本上克服了晶闸管斩波器及GTR 斩波器的缺点。

该斩波器既能为煤矿窄轨电机车配套的调速装置,针对不同的负载对象,做一些少量的改动又可用于其它要求供电电压可调的直流负载上。

与可控硅脉冲调速方式和电阻调速方式相比,具有明显的优点。

IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。

IGBT是MOSFET与双极晶体管的复合器件。

它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。

其频率特性介于MOSFET与功率晶体管之间,可正常工作于几千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。

因此,在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。

本系统正是基于IGBT的直流斩波作为直流电机调速系统。

2课程设计的方案2.1概述本次设计主要是综合电力电子所学知识,设计出对直流电机的调速系统,并在实践的基本技能方面进行一次系统的训练。

能够较全面地巩固和应用电力电子课程中所学的基本理论和基本方法。

应用场合:应用于电力机车和高速动车组,风力发电机调速等工业控制领域。

系统功能介绍:IGBT降压斩波电路,可通过IGBT的通断,控制电机两端电压的变化,从而达到直流调速的目的,系统具有过压过流保护电路。

2.2系统组成总体结构直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。

它在电源的设计上有很重要的应用。

一般来说,斩波电路的实现都要依靠全控型器件。

在这里,本系统设计的是基于IGBT的降压斩波电路。

系统电路主要分为三个部分,分别为主电路模块,触发电路模块和驱动电路模块,其次还需要整流电路和保护电路。

系统整体框图如图2.1所示。

图2.1 系统整体框图3硬件设计3.1整流电路设计供给斩波的直流电是由交流电经整流后得到的,其匝数比经计算为1:0.75。

整流桥后加大电容和大电感对电压和电流进行滤波。

整流电路如图3.1所示。

图3.1整流电路由任务要求可知要求供给斩波的直流电压为210V。

触发电路的PWM调节范围为10%--90%,当触发电路占空比为90%时输出电压最大为额定电压。

触发器占空比90%时负载电压:U R=210V=210/0.9=233.33V整流桥输出电压:U1变压器二次侧电压有效值为:U2=233/√2=164.76V变压器二次侧电流最大有效值为:I2=1.2A变压器一次侧与二次侧匝数比:N1:N2=1:0.753.2主电路设计主电路是整个斩波电路的核心,本系统设计的是降压斩波电路模块,通过降压斩波电路实现对电机两端电压调节,从而达到对电机调速的目的。

主电路如图3.2所示。

图3.2 主电路如图3.2所示,IGBT 在控制信号的作用下开通与关断。

开通时,二极管截止,电流流过大电感L ,电源给电感充电,同时为负载供电。

而IGBT 截止时,电感L 开始放电为负载供电,二极管VD 导通,形成回路。

IGBT 以这种方式不断重复开通和关断,而电感L 足够大,使得负载电流连续,而电压断续。

从总体上看,输出电压的平均值减小了。

输出电压与输入电压之比α由控制信号的占空比来决定。

这也就是降压斩波电路的工作原理。

降压斩波的典型波形如图3.3所示。

图3.3 降压斩波波形图图3.2中的负载为电动机,是一种放电动式负载。

反电动势负载有电流连续和电流断续两种工作状态。

分别入图3.3中a )和b )所示。

无论哪一种情况,输出电压的平均值都与负载无关,其大小为:(3-1) t OO O E O t t tE M i G t t T i Gt ont off i o i 1i 2I 10I 20t 1u oa)b)O O T E E i t on t off i o t x i 1i 2I 20t 1t 2u o E E T t E t t t U α==+=on on oT ON 表示导通的时间;T OFF 表示截止的时间;α表示导通时间占空比。

对于输出电流,当U 0>E 时,电流连续,输出电流平均值大小为:(3-2) 当U 0<E 时,电流既无法通过IGBT 也无法通过二极管。

于是出现了电流断续的现象。

一般不希望出现电流断续的现象,因此需要通过控制信号占空比的调节来维持负载的电流。

3.3 触发电路设计触发电路需要实现的功能是产生控制信号,用于控制斩波电路中主功率器件的通断,通过对占空比的调节达到控制输出电压大小的目的。

斩波电路有三种控制方式:1) 保持开关周期T 不变,调节开关导通时间T ON ,称为脉冲宽度调制;2) 保持导通时间不变,改变开关周期T ,成为频率调制;3)导通时间和周期T 都可调,是占空比改变,称为混合型。

因为斩波电路有三种控制方式,又因为PWM 控制技术应用最为广泛,所以采用PWM 控制方式来控制IGBT 的通断。

PWM 控制就是对脉冲宽度进行调制的技术。

这种电路改变脉冲的占空比来获得所需的输出电压。

因为输入电压和所需要的输出电压都是直流电压,因此脉冲等幅,仅是对脉冲的占空比进行控制。

对于控制电路的设计其实可以有很多种方法,可以通过一些数字运算芯片如单片机、CPLD 等等来输出PWM 波,也可以通过特定的PWM 发生芯片来控制。

因为要求输出电压连续可调,所以本设计选用一般的PWM 发生芯片来进行连续控制。

对于PWM 发生芯片,本设计选用了Silicon General 公司的SG3525芯片,其引脚图如图3.4所示。

图3.4 SG3525触发芯片RE U I M o o -=)37.0(1d t t R R C f +=SG3525是一款专用的PWM 控制集成电路芯片,它采用恒定频率宽度调制控制方案,内部包括精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。

其11和14脚输出两个等频率等幅、相位互补、占空比可调的PWM 信号。

其6和脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525的振荡器。

振荡器还设有外同步输入端(脚3)。

脚1 及脚2 分别为芯片内部误差放大器的反相输入端和同相输入端。

该放大器是一个两级差分放大器。

根据系统的动态和静态特性要求,在误差放大器的输出脚9和脚1之间一般要添加适当的反馈补偿网络,另外当10脚的电压为高电平时,11和14脚的电压变为10输出。

本设计所用触发电路如图3.5所示。

图3.5 SG3525触发电路由于SG3525的振荡频率可表示为:式中:C t ,R t 分别是与脚5和脚6相连的振荡器的电容和电阻,R d 是与脚7相连的放电端的电阻。

根据任务要求需要频率为5.7kHz,所以由上式可取C t=0.01μF,R t =Ωk1。

可得f=5.7kHz,满足要求。

k1,R d=5.Ω3.4驱动电路设计驱动电路的作用是将芯片输出的脉冲进行功率放大,以驱动IGBT。

对于保证IGBT的可靠工作,驱动电路起着至关重要的作用。

对于驱动电路的设计要求,我们遵从以下四点:1)动态驱动能力强,能为IGBT栅极提供具有陡峭前后沿的驱动脉冲。

否则IGBT会在开通及关延时,同时要保证当IGBT损坏时驱动电路中的其他元件不会被损坏。

2)能向 IGBT提供适当的正向和反向栅压,一般取+15 V左右的正向栅射驱动电压比较恰当,取-5V反向栅射驱动电压能让IGBT可靠截止。

3)具有栅射驱动电压限幅电路,保护栅极不被击穿。

IGBT栅极极限电压一般为±20V,驱动信号超出此范围可能破坏栅极。

4)当 IGBT处于负载短路或过流状态时,能在IGBT允许时间内通过逐渐降低栅射驱动电压自动抑制故障电流,实现IGBT的软关断。

驱动电路的软关断过程不应随输入信号的消失而受到影响。

当然驱动电路还要注意其他几个问题。

主要是要选择合适的栅极电阻R g和R ge。

以及要有足够的输入输出电隔离能力,要能够保证输入输出信号无延时。

经资料查找确定了本设计所用日本FUJI公司的EXB841芯片,它具有单电源,正负偏压、过流检测、保护、软关断等主要特性。

其功能比较完善,在国内的到了广泛应用。

EXB841工作原理如图3.6所示。

图3.6 EXB841内部原理图1)正常开通过程:当EXB841输入端脚14和脚15有10mA的电流流过时,光耦合ISO1导通,A点电位迅速下降至0 V,V1和V2截止。

V2截止使D点电位上升至20 V,V4导通,V5截止,EXB841通过V4及栅极电阻R g 向一个IGBT提供电流使之迅速导通。

2)正常关断过程:控制电路使EXB841输入端脚14和脚15无电流流过,光耦合ISO1不通,A点电位上升使V1和V2导通。

V2导通使V4截止、V5导通,IGBT栅极电荷通过V5迅速放电,使EXB841的脚3电位迅速下降至0V,使IGBT可靠关断。

本设计EXB841驱动电路如图3.7所示。

图3.7 EXB841驱动电路本设计对驱动电路进行了优化:驱动电路中D11起保护作用,避免EXB841的6脚承受过压,通过D6检测是否过流,接D7的目的是为了改变EXB模块过流保护起控点,以降低过高的保护阀值从而解决过流保护阀值太高的问题。

R11和C9及D10接在+20V电源上保证稳定的电压。

D8和D9避免栅极和发射极出现电压,R12是防止IGBT误导通。

3.5 保护电路设计对于保护电路在触发电路和驱动电路上都有体现,SG3525和EXB841都集成了电流电压的保护电路。

相关主题