污水处理系统设计方案(1)、化粪池主要功能:化粪分解大颗粒物质、沉降悬浮物、腐烂硝化有机污染物,为后续处理设施创造条件。
该池由业主方在基建工程中自建。
化粪池污泥每半年启运一次。
建议设计参数为水力停留时间:HRT ≥36h 。
池型:三格化粪池。
设计流量:Qmax =600m 3/d =25m 3/h =0.0069m 3/s ; 污水部分容积: Nqt 100030243V 110001000===720m 式中:N ——化粪池的实际使用人数;Q ——每人每天的生活污水量(L/人·d ),一般取20-30 L/人·d ; T ——污水在化粪池中的停留时间(h ); 根据有关规定,污水在化粪池的停留时间取24~36h 。
污泥部分容积:aNT(1.00b)K 1.20.7100036(1.00-0.950.8 1.23V 21.00-0.91000(1.00-c)1000===12m)() -则化粪池有效容积V=V 1+V 2 =720+12=732m 3数量:2座单座有效尺寸:L ×B ×H=9.0×8.0×5.0m 单座设计尺寸:L ×B ×H=9.0×8.0×5.5m 设计总容积:792m 3结构方式:砖混。
(2)、格栅池①、主要功能:用以截阻大块的呈悬浮状态的污物。
在污水处理流程中,格栅是一种对后续处理构筑物或水泵机组具有保护作用的处理设备。
②、设计数据A、设计流量: Q=500m3/d=21m3/h=0.0058m3/s,变化系数K=1.8—2.2,取2.2,Q max为0.0128m3/s。
B、栅前进水管道:栅前水深(h)、进水渠宽(B1)与渠内流速(v1)之间的关系为v1 = Q max / B1h ,则栅前水深 h = 0.50 m,进水渠宽 B1 =0.5m,渠内流速 v1 = 0.04 m/s,设栅前管道超高 h2 = 0.30 m。
C、格栅:一般污水栅条的间距采用10~50 mm。
对于生活污水,规模较小的选取栅条间隙 b = 20mm。
格栅倾角一般采用45°~75°。
人工清理格栅,一般与水平面成45°~ 60°倾角安放,倾角小时,清理时较省力,但占地则较大。
机械清渣的格栅,倾角一般为60°~70°,有时为90°。
生活污水处理中,当原水悬浮物含量低、处理水量小(每日截留污物量小于0.2m3的格栅)、清除污物数量小时,为了减轻工人的劳动强度,一般应考虑采用人工固定格栅。
本设计中,拟采用人工固定格栅,格栅倾角为α= 60°。
为了防止栅条间隙堵塞,污水通过栅条间隙的流速一般采用0.6 ~ 1.0 m/s,最大流量时可高于1.2 ~ 1.4 m/s。
但如用平均流量时速度为0.3 m/s,另外校核最大流量时的流速。
栅条断面形状、尺寸及阻力系数计算公式:(取用)锐形矩形ζ=βsb4/3β= 2.42图2-1 格栅断面形状示意图(4) 进水管道渐宽部分展开角度α1= 20°。
(5) 当格栅间距为16 ~ 25 mm时,栅渣截留量为0.10 ~ 0.05 m3/103m3污水,当格栅间距为30 ~50 mm时,栅渣截留量为0.03 ~0.01m3/103m3污水。
本设计中,格栅间距为20mm,所以设栅渣量为每1200 m3污水产0.08m3。
③设计计算A、栅条的间隙数nQmax(sinα)1/2式中:Q max —最大设计流量,m 3/s ; α—格栅倾角,°;b —格栅间隙,m ; h —栅前水深,m ; v —过栅流速,m/s 。
格栅的设计流量按总流量的80%计,栅前水深h = 0. 5 m ,过栅流速v = 0.6 m/s ,栅条间隙宽度b = 0.02 m ,格栅倾角α=60°。
120.012880%20.020.60.5(sin60)n ⨯⨯==⨯⨯︒个B 、 栅槽宽度B(1)B s n bn =-+式中:s —栅条宽度,m ; b —栅条间隙,m ; n —栅条间隙数,个。
则设栅条宽度s = 0.02 m ,栅条间隙宽度b = 0.02 m ,栅条间隙数n 由上式算出为4个。
(1)0.02(21)0.020.06B s n bn m =-+=⨯-+⨯2=由于计算出栅槽宽度偏小, 实际栅槽宽度B 取1.0m 。
αhHBαBL H tanL图:格栅水力计算示意图C 、 进水管道渐宽部分的长度L11112tan B B l -=α式中:B —栅槽宽度,m ;B 1 —进水渠宽,m ;α1—进水管道渐宽部分展开角度。
则设进水渠宽B 1 = 0.5 m ,其渐宽部分展开角度α1 = 20°,栅槽宽度B=1.0m ,11 1.00.50.682tan 2tan 20B B l m °1--==≈αD 、 栅槽与出水管道连接处的渐窄部分长度L 2122l l =则20.680.342l m == E 、 通过格栅的水头损失h 1211sin ()2v h k m gξ=α⨯式中:ξ—阻力系数,其值与栅条断面形状有关,4/3s b ξβ⎛⎫= ⎪⎝⎭;v —过栅流速(m/s ); g —重力加速度(m/s 2); α—格栅倾角(°);k —系数,格栅受污物堵塞时水头损失增大倍数,一般采用k=3。
则设栅条断面为锐边矩形断面, 2.42s 0.02m b 0.02m ,,β===;过栅流速v = 0.6 m/s ;格栅倾角60α=42310.020.62.42()sin 6030.120.0229.8h m =⨯⨯⨯⨯=⨯°F 、 栅后槽总高度H12H = h + h + h式中:h —栅前水深(m ); 1h —设计水头损失(m );2h —栅前管道超高,一般采用2h = 0.3 m 。
则设栅前水深h = 0.5 m ,栅前管道超高2h = 0.3 m ,设计水头损失由上述算得1h = 0.12m 。
5.0=H +0.12+0.3=0.92mG 、 栅槽总长度L()112H L l l 1.00.5m tan α=++++式中:1l —进水管道渐宽部分的长度(m );2l —栅槽与出水管道连接处的渐窄部分长度(m ); 1H —栅前管道深(m )。
则1l 与2l 由前知得1l = 0.68 m ,2l =0.34 m ,栅前管道深1H 为栅前水深和超高的和,H 1=0.5+0.3=0.8m ,0.8L 0.680.341.00.53tan60m =++++≈°H 、 每日栅渣量W()3max 1Q W W m /d 1000=式中:1W —栅渣量(333m /10m 污水),格栅间隙为16~25mm 时,1W = 0.10~0.05333m /10m 污水;由此估计20mm 的格栅间隙的1W = 0.08333m /10m 污水 则本设计中污水处理站以处理生活污水为主,则max 1Q W W 0.0410001000===500х0.08m 3/d因为W 小于0.2m 3/d ,所以宜采用人工固定格栅清渣。
I 、校核校核过栅流速:3max 0.0128/,0.5,2Q m s h m n ===个max sin 600.0128sin 600.6/0.020.52Q v m s bhn ⨯⨯==≈⨯⨯°°污水通过栅条间距的流速一般采用0.6~1.0m/s ,但是由于污水量小,当采用平均流量时其值可取0.1~0.3m/s.,所以满足要求。
J 、 设备选型根据理论计算选用人工固定格栅,但为了保证污水处理效果,本工程采用机械格栅:型号GF-650×1600,数量1台,功率0.75kw ,机宽650mm ,渠深1600mm ,栅隙5mm ,排渣高度800mm ,安装角度75度,机架碳钢,耙齿不锈钢。
K 、格栅槽尺寸:L ×B ×H =6.0×1.0×1.55m 设计容积:9.3 m 3结构方式:半地上式砖混结构,建在调节池上。
(3)、隔油池油类物质的密度一般都比水小,按在水中的存在状态可将其分为溶解性油、可漂油、分散油、乳化油,由于在小区职工日常生活、洗车、修车污水中占有大量油脂,在污水处理系统的前端,需将污水中的漂浮油脂去除,因污水量较小,采用小型隔油池,具有良好的处理效果。
隔油池设计:取污水在隔油池内的停留时间T=0.8h,水平流速v=2mm/s由于污水量小,设计为小型隔油池,池型参考《三废处理工程技术手册》废水卷,P 293 图2-1-16 设计计算如下:设隔油池内污水停留时间为0.8h ,则除油池的容积 W=QT=500/24×0.8=16.8m 3设隔油池污水水平流速为2mm/s ,则隔油池过水断面面积为:2326.3216.3/Q Ac m v =⨯==(取宽1.2m 、高2.5m ) 隔油池有效长度L 为: L=3.6vt=3.6×2×0.8=5.8m设池水面以上的池壁超过为0.5m ,则隔油池建筑总高度为 H=2.5+0.5=3.0m设计尺寸:L ×B ×H=5.8×1.2×3.0m 设计容积:20.88m3结构方式:半地上式砖混结构。
(4)、调节池由于生活污水排放具有非连续性,污水浓度和产生量波动较大,这些特点给污水处理带来一定的难度,必须设一调节池给予均合调节污水水质水量,才不致后续处理受到较大的负荷冲击。
为了保证处理设备的正常运行,在污水进入处理设备之前,必须预先进行调节。
将不同时间排出的污水,贮存在同一水池内,并通过机械或空气的搅拌达到出水均匀的目的,此种水池称为调节池。
调节池根据来水的水质和水量的变化情况,不仅具有调节水质的功能,还有调节水量的作用,另外调节池还具有预沉淀、预曝气、降温和贮存临时事故排水的功能。
本设计中,拟选用矩形水质调节池。
污水从栅后渠道自流入调节池的配水槽,污水分为两路,进入左右两侧配水槽中,经两侧的配水孔流入调节池中。
①、设计数据A、设计流量333==21≈Q m d m h m s500//0.058/B、设计停留时间由于污水排放的不规律性,所以水量在时间方面变化较大,而水质也时常有一定的变化。
所以需要一定的停留时间,本设计中拟采用水力停留时间为T =6.5 h。
②、调节池类型调节池在污水处理工艺流程中的最佳位置,应依每个处理系统的具体情况而定某些情况下,调节池可设于一级处理之后生物处理之前,这样可减少调节池中的浮渣和污泥,如把调节池设于初沉池之前,设计中则应考虑足够的混合设备,以防止固体沉淀和厌氧状态的出现。