当前位置:文档之家› AC-DC-DC电源技术方案设计

AC-DC-DC电源技术方案设计

直流电源设计方案目录1.概述 (1)2 系统的整体结构设计 (3)3.三相六开关APFC电路设计 (23)4. 移相全桥ZVS PWM变换器分析与设计 (28)5.高压直流二次电源DC/DC变换器设计 (34)6. 器材选取 (40)7. 电源系统散热分析 (55)8. 参数设计仿真结果 (58)1.概述1.1 目的和意义目前,越来越多的电力电子设备投入到电网中,由于不可控整流器在大功率电源设备中的广泛应用,其对电网造成的谐波污染日益严重,使得电能生产、传输和利用的效率降低,并影响电网的安全运行。

为了保证电网的正常运行,现在采取的办法往往是限制接入电网的整流设备的容量,这就限制了一些大功率直流电源的使用。

电力电子装置,尤其是各种直流变换装置向高频化、高功率密度化发展,其关键技术是软开关技术。

因此,大功率开关电源的功率因数校正技术及DC/DC变换器软开关技术是当前研究的热点。

1.2 开关电源技术发展现状开关电源是采用功率半导体器件作为开关元件,通过控制开关元件的占空比进而调整输出电压的电源变换装置,开关电源的前置级将电网工频电压经整流滤波为直流电压,再经直流变换电路即开关电源后即处理后输出、整流、滤波。

为了稳定输出电压,设计电压反馈电路对输出的电压进行采样,并把所采样的电压信号送到控制电路中,进行比较处理,调节输出的控制脉冲的占空比,最终使输出电压的纹波及电源的稳定满足设计指标。

开关电源通常包括EMI滤波模块、AC/DC变换模块、DC/DC变换模块、控制、驱动及保护模块、辅助电源模块等。

传统的开关电源输入电流中谐波含量高,功率因数低,开关损耗大、电磁干扰严重等一系列问题阻碍了电源技术向着高效率、绿色化、实用化的方向发展。

自20世纪80年代以来,随着有源功率因数校正技术和软开关技术的发展,上述问题得到了较好的解决,开关电源技术也步入了一个新的迅速发展的阶段。

1.3 本次设计的主要容本次设计一款符合《航天地面直流电源通用规》要求的直流电源系统。

其采用两级结构,前级AC/DC部分采用三相六开关APFC电路,后级采用移相全桥ZVSPWM变换电路。

前级采用三相APFC整流电路,保证系统在6KW功率下平稳工作,功率因素大于0.99,具有较强鲁棒性,具有过压、欠压指示,输出过压、限流等保护功能。

后级采用全桥变换器,采用软开关技术,减小系统能量损耗,且保证输出电压在45V-100V连续可调,且电压稳定(峰峰值小于500mV,电压稳定度不大于1%),具有良好的屏蔽性能,屏蔽性能大于40dB,系统具有双模式(电压源模式,电流源模式)工作特点。

具有友好的人机界面,提供外接显示屏,可实时显示输出电压、电流、输入侧功率因数等实时信息,方便用户调整系统参数,并预留CAN 总线端口。

整体尺寸不大于600mm*500mm*500mm,整体质量不大于50Kg,产品符合GJB 1412-92《航天地面直流电源通用规》。

并根据相关要求依据设计所需采购工业级以上(含工业级)电源元件。

2 系统的整体结构设计2.1 主要技术参数➢输入电压:三相交流 380V( ±10% ),50HZ➢输出电压45V~100V可调➢输出电流:DC 100A➢功率因数:>0.99➢电源效率:>90%➢输出电压稳定度:不大于1%➢输出电压纹波(峰-峰值):不大于500mV➢过载能力:120% 额定值➢冷却方式:风冷或强制风冷2.2 系统设计方案为了兼顾电源性能与电路复杂度,电源采用两级结构,前级为APFC AC/DC 变换模块,实现三相交流电到直流电的变换,该变换模块具备APFC功能,用以提高电路功率因数,减少电源对电网的谐波污染;后级 DC/DC 模块完成直流电压的变换与输出,采用软开关技术,使DC/DC变换电路中的开关管均工作在软开关状态,减少开关电源电路在高频时的开关损耗,提高电源效率。

另外电路中还包含辅助电源电路、EMI电路、控制电路、驱动电路、保护电路等,电源的整体设计方案如图 2-1 所示。

图 2-1 开关电源整体设计方案2.3 前级AC/DC APFC变换电路2.3.1 APFC 主电路结构设计按照开关电源接入电网方式的不同,APFC 电路可以分为单相APFC电路和三相APFC电路。

其中在小功率场合常采用单相APFC电路,其结构与控制方式相对简单,国外的一些研究结构和科研公司均开发了一些专用的APFC控制芯片,经过近些年的发展,技术臻于成熟;三相APFC电路适合于功率的场合,其中三相电压与电流之间的耦合问题是其存在的主要问题。

探究简单可靠的三相APFC拓扑,将三相 APFC 电路实用化是现代研究的热点。

本次设计开关电源采用三相380V交流输入,以下将对各种三相PFC电路进行比较与分析。

(1)三相单开关PFC电路三相单开关 PFC 电路是三相 PFC 电路中结构和控制最为简单的电路,其可以看为单相 PFC整流电路在三相 PFC 整流电路中的拓展。

如图 2-2 所示,在电路的拓扑中,只使用一个开关管,通过控制开关管的占空比来控制输入电流的大小,迫使输入电流跟随输入电压变化,从而使输入电流逼近于正弦波,且与输入电压同相,实现功率因数校正。

三相单开关 Boost PFC 电路由于其电路设计简单,控制简便,可靠性较高,因此得到了广泛的应用。

D7图 2-2 三相单开关 Boost 型 PFC 电路(2)三相双开关 PFC 电路三相双开关 PFC 电路图2-3所示,在 AC/DC 变换器的输入端使用三个电容并联,进而构造出一个中线,将直流侧的两只开关管串联在一起,并使两只串联开关管的中点与前端构造出的中线相连。

恒频的控制开关管 S1 的 S2 的互补导通,使得电感电流峰值与输入电压成正比,输入侧交流电流波形也近似校正为正弦波,且与输入电压同相,从而实现功率因数校正的目的。

这个电路的典型优点是:a)在电路的负载较大时,不需要辅助的谐振电路,两个开关管 S1、S2 均工作在软开关状态,在开关频率很高时,可以大大减少了开关损耗,提高了电路效率,降低电路散热的要求; b)这种双开关三相 PFC 电路具备拓扑结构简单、控制容易、成本低、容易实现等优点,因此其具备很强的研究价值及实用性。

图 2-3 三相双开关PFC电路(3)三相三开关 PFC 电路有学者提出了三相三开关PFC电路如图2-4所示。

图 2-4 三相三开关 PFC 电路三相三开关PFC电路中,每相电源各自连接一个开关管,其储能电感的充电与放电的状态,由每相串联的开关进行控制,当开关导通时电流增加,关断时,电流下降。

每相的工作原理与单相Boost型PFC电路相似,且电感电流连续,理论功率因数为1。

此电路可采用三电平技术,在这种工作状态下,开关管与二极管等半导体器件的耐压要求与单相PFC电路的器件是一样的,其控制策略与三个单相Boost型PFC电路也相似。

该电路只有当输入交流电压过零时控制开关动作,控制每相电感电流的大小,达到三相电流的部分解耦目的。

该电路具备的显著特点是:a)电路工作在工频下,不需要高频的半导体器件,可以减少电路的成本与开关损耗;b)电路中不需中线,且电流中不含三次谐波,开关应力小; c)重载时功率因数校正的效果较好,轻载时较差。

因此,三相三开关的PFC电路适合于对设备体积要求不高、负载变化围不大的应用场合中。

(4)三相四开关PFC电路三相四开关PFC电路如图2-5所示。

该电路与三相双开关PFC电路是相近的,不同的是输入端的中线是由三个RL电路构造出的,且整流桥的下桥臂开关管是三个可控的开关,而在直流侧只用一个开关管与一个二极管并联成一个桥臂。

相对于三相双开关电路,这种电路拓扑不存在直通的危险。

图2-5 三相四开关 PFC 电路(5)三相六开关PFC电路三相六开关PFC电路如图 2-6 所示。

三相六开关PFC电路是一种三相全解耦的电路拓扑,其又称为三相PWM整流器。

图 2-6 三相六开关 PFC 电路在三相电路中,共有三个电压与电流需要进行控制,三相六开关电路中,使用两个开关控制一相电流,将电流校正为与电压同相的正弦波,功率因数接近于1。

常用的控制策略有 d-q 坐标系控制,空间矢量控制等。

三相六开关PFC电路进行功率因数校正的功率因数最高,但其开关器件较多而且控制相当复杂。

通过对五种三相APFC电路拓扑结构的分析,可以得出下表2-1,三相单开关APFC 电路、三相双开关APFC 电路、三相三开关APFC 电路拓扑结构较为简单,控制容易实现,但功率因数校正后,输入电流中,谐波成分依然很大,三相四开关 APFC 电路与三相六开关 APFC 电路功率因数校正的效果比较好,可以达到单位功率因数。

但所需开关器件众多,控制非常复杂,多采用数字芯片进行控制,实现的成本较高。

表2-1 三相APFC电路优缺点分析因此为了考虑开关电源的性能,以及电源的大功率应用,本此设计拟采用三相六开关APFC电路,旨在提高电源的功率密度及效率。

2.3.2 APFC 控制技术确定按照开关变换器导电模式的不同,可以将APFC电路分为连续导电模式(CCM)型与不连续导电模式(DCM)型。

变换器工作在连续导电模式下,是指在电路开关管关断的时间间隔,续流二极管上的电流不降为零。

变换器工作在 DCM 是指变换器中的开关和二极管在一个开关周期中变换器中电感电流降为零,即开关管与二极管都不导通。

下面将研究变换器工作在DCM模式和CCM模式下的几种控制策略。

(1)DCM控制模式DCM控制模式又被称为电压跟踪法,其广泛的适用于单相或三相单开关、双开关等电路中。

其显著的优点为:输入电流自动跟踪电压且功率管工作在零电流开通。

由于电感电流会在开关管关断期间产生为零的时刻,因此其缺点为:a)由于电路工作在电感电流断续的模式下,因此输入电流与输出电流中含有的纹波较大,因此电路中的对滤波电路要求较高;b)电流中存在较高的峰值电流,因此开关器件需要承受较大的电流应力。

DCM的控制可以采用恒频、变频、等面积等多种控制方式。

恒频控制是指开关变换器中控制半导体开关的频率是恒定不变的,在此控制策略下,开关变换器的开关频率保持不变,即开关周期是不变的,而功率管的占空比D是变化的,正是因为如此,电源输入的平均电流并不正比于输入电压,因此输入电流会产生畸变,其工作电流的波形如图2-7所示。

图2-7 DCM恒频控制电流波形变频控制是指开关的频率是不断发生变化的,即开关周期是不断发生变化的,而开关管的占空比始终保持不变。

电源电压与输入平均电流成正比,因此可以得到单位功率因数。

这种控制策略中,功率管的开启时间即占空比始终是恒定的,电感电流始终处于临界导电模式,其工作电流波形如图 2-8 所示。

图 2-8 DCM 变频控制电流波形(2)CCM 控制模式CCM 模式是目前应用最多的控制方式之一,这种控制方式来源于 DC/DC 变换器的电流控制模式。

相关主题