当前位置:文档之家› 激光诱导荧光光谱技术

激光诱导荧光光谱技术

精品课件
1 简介
激光特性 1 激光参数可以精确控制 2 激光的方向性、单色性好 3 激光的相干性好、强度大 4 产生荧光信号信噪比高
精品课件
2 原理
让一束激光通过检测区域,调节激光波长,当激光光子的 能量(与激光的波长相关)等于检测区域某种组分分子的某两 个特定能级之间的能量之差时,该分子会吸收光子能量跃迁至 高能态。
精品课件
5 应用
(3)燃烧系统中的应用
测量温度、粒子浓度等。LIF方法在火焰中粒子 浓度的测量包括: ① 瞬态自由基粒子的测量。瞬态自由基是燃烧中的 反应中间体,如OH等。 ② 污染粒子测量,用于对污染物的控制与排放,常 见的污染粒子有NO、CO、NO2、SO2等分子, LIF方法的空间与时间的分辨测量有助于深入理解 燃烧过程中这些粒子形成的机理。 ③ 金属粒子的测量,如Na、K、NaS等。
精品课件
5 应用
(2) 水 质 监 测 LIF 遥测系统以355 nm 激发波长的Nd-YAG晶体激
光器为激发光源, 脉冲宽度4 ns , 重复频率10Hz 。脉冲 激光通过卡塞格伦望远镜射入待测水体, 后向散射的荧光 进入望远镜, 使用光纤分为两路, 一路通过干涉滤光片, 光电倍增管测量作为水拉曼光强度, 另一路通过安装有中 心波长为355 、450 和685 nm 三块干涉滤光片的转轮, 以光电倍增管测量瑞利散射光、DOM 荧光和叶绿素a 荧光强度。测得的瑞利散射光、DOM 荧光和叶绿素a 荧光强度以水拉曼光强度进行归一化, 记为瑞利散射因子、 DOM 荧光因子和叶绿素a 荧光因子, 分别与水体浊度、 DOM 浓度和叶绿素a 浓度成线性正相关。
N不变,则可以通过荧光强度来确定样品中被测元素
的含量。
精品课件
5 应用
(4) 痕 量 分 析
凡是能发射荧光的物质都可以采用分子荧光法进行 分析,例如许多无机物、有机物、生物和生化样品(如 维生素、氨基酸、蛋白质、酶、药物、荷尔蒙、农药、 病原抗体等)。
对于许多含量很低的生化样品,在高功率激光照射 下很快发生热分解,可改用峰值功率很高而平均功率 很低的窄脉冲激光激发,从而能获得一定的荧光强度 而不破坏样品。
精品课件
6 应用
目前LIF技术已应用于气体、液体、固体的测量中及燃烧、 等离子体、喷射和流动现象中。
生物 医学
环境 其他
毛细血管电泳检测 病变诊断 叶绿素荧光分析 基因突变 DNA分析
检测大气、 水体污染、
精品课件
检测火焰、 流场等
5 应用
(1)叶绿素荧光寿命的测量
采用波长355 nm的激光作为光源激发叶绿素荧 光,由光电倍增管接收其荧光信号,由于被测叶绿素 荧光衰减函数与激光脉冲、仪器响应函数卷积在一 起,根据它们的特性,运用时间分辨测量法分别测得 叶绿素荧光及其背景信号,并结合解卷积算法可分离 出真实的叶绿素荧光衰减函数,从而获取叶绿素的荧 光寿命. 该方法能够实现叶绿素荧光寿命的高精度 实时监测,通过对不同叶绿素含量的溶液荧光寿命测 试,证明叶绿素含量与其荧光寿命具有相关性, 确定 了叶绿素含量与荧光寿命的标定曲线.
精品课件
3 系统组成
图1 激光诱导荧光光谱系统结构图
精品课件
4 突出优点
高分辨率 相应时间快 灵敏度高 干扰小 测温范围宽
可达到微米量级。
时间分辨最高可达纳秒量级,可对自由基等瞬 态物质寿命进行检测。
探测下限可达106个粒子/cm3,浓度检测最低可 达10-13mol/L。
通过激光激发,而不涉及接触式的探针等器件, 对等离子体,燃烧等干扰相对较小。
光学组件:光路调整,光路转换,过滤杂散光等作用。
样品池:气体密闭池、液体池。窗口与光路上不产生激发光的散射,
窗口与池壁不产生荧光、样品池的窗口通常作成布儒斯特角。
光电探测器:光电倍增管、光电二极管、电荷耦合器件CCD等。
信号处理模块:信号采集、分析、显示和处理, 根据信号控制激光
器、检测光路和光电探测器等模块, 实现在线分析、处理和信号优化。
激光诱导荧光光谱技术
精品课件
☞ 目录:
1
简介
2
原理
3
系统组成
4
突出优点
5
主要问题
6
精品课件
应用
1 简介
激光诱导荧光光谱技术
以激光做为光源激发荧光物质产生的荧光称为激光诱 导荧光(Laser-Induced Fluorescence,LIF),是荧光 分析方法的一种。
与瑞利散射和拉曼散射不同,LIF过程不是一个散射 过程,是一个波长的吸收和转化过程。照射激光激发分 子发出更长波长的光,发射荧光强度比散射强度强。与 普通荧光分析方法不同, LIF的激发光源采用激光,灵 敏度较高、检测效果好。
精品课件
敬请老师和同学批评指正!
精品课件
精品课件
5 应用
(4) 痕 量 分

与分子的痕量检测,在激光激发下,原子所发出的荧光
强度IF与入射光强度I0和单位体积中处于基态的原子数
目N成正比:
摩尔消光系数
IFΦ FA0ImLN
荧光量子产额 有效照射面积
吸收长度
在检测中如保持入射光强度I0和单位体积中原子数目
处于高能态的分子不稳定,在一定时间内它会从高能态返 回到基态。在此过程中,分子会通过自发辐射释放能量发光而 产生荧光,这就是激光诱导荧光。
实际应用中,从荧光的分布,可以探测粒子的种类;从荧 光的强弱,可得知粒子的浓度以及温度;利用其空间分辨性还 可以测量粒子的浓度场、温度场。
精品课件
3 系统组成
激光器:气体激光器、固体激光器、液体激光器、半导体激光器等。
已有在1600℃的实验条件和1100℃的燃气轮机条件 下进行荧光测温的报道,测温精度可达±1℃。
精品课件
5 主要问题
1 目前不常检测的物种,其荧光分离需要一定的光谱基础; 2 对于浓度在ppm级以下的物质荧光可能较弱; 3 对自由基的绝对浓度测量,需要仔细的标定; 4 对激光器的要求较高,维护昂贵; 5 测量系统较复杂。
相关主题