当前位置:文档之家› 类MIPS单周期微处理器设计实验报告

类MIPS单周期微处理器设计实验报告

类MIPS单周期微处理器设计实验报告专业:电子信息工程班级:电信1501班学号:U*********姓名:一、实验目的1.了解微处理器的基本结构2.掌握哈佛结构的计算机工作原理3.学会设计简单的微处理器4.了解软件控制硬件工作的基本原理二、实验任务利用HDL语言,基于Xilinx FPGA nexys4实验平台,设计一个能够执行以下MIPS指令集的单周期类MIPS处理器,要求完成所有支持指令的功能仿真,验证指令执行的正确性,要求编写汇编程序将本人学号的ASCII码存入RAM的连续内存区域——支持基本的内存操作如lw,sw指令——支持基本的算术逻辑运算如add,sub,and,or,slt,andi指令——支持基本的程序控制如beq,j指令三、微处理器各模块设计各模块的框图结构如上图所示。

由图可知,该处理器包含指令存储器、数据存储器、寄存器组、ALU单元、符号数扩张、控制器、ALU控制译码以及多路复用器等。

图中还忽略了一个单元:时钟信号产生器,而且以上各个部件必须在时钟信号的控制下协调工作。

1.指令存储器的设计指令寄存器为ROM类型的存储器,为单一输出指令的存储器。

因此其对外的接口为clk、存储器地址输入信号(指令指针)以及数据输出信号(指令)。

(1)在IP wizard 中配置ROM,分配128个字的存储空间,字长为32位宽。

(2)选择输入具有地址寄存功能,只有当时钟上升沿有效时,才进行数据的输出。

(3)配置ROM内存空间的初始化COE文件。

最后单击Generate按钮生成IROM模块。

2.数据存储器的设计数据存储器为RAM类型的存储器,并且需要独立的读写控制信号。

因此其对外的接口输入信号为clk、we、datain、addr;输出信号为dataout。

数据存储器基本建立过程同ROM的建立。

3.寄存器组设计寄存器组是指令操作的主要对象,MIPS中一共有32个32位寄存器。

在指令的操作过程中需要区分Rs、Rt、Rd的地址和数据,并且Rd的数据只有在寄存器写信号有效时才能写入,因此该模块的输入为clk、RegWriteAddr、RegWriteData、RegWriteEn、RsAddr、RtAddr、reset;输出信号为RsData、RtData。

由于$0一直输出0,因此当RsAddr、RtAddr为0时,RsData以及RtData 必须输出0,否则输出相应地址寄存器的值。

另外,当RegWriteEn有效时,数据应该写入RegWriteAddr寄存器。

并且每次复位时所有寄存器都清零。

代码如下:module regFile(input clk,input reset,input [31:0] regWriteData,input [4:0] regWriteAddr,input regWriteEn,output [31:0] RsData,output [31:0] RtData,input [4:0] RsAddr,input [4:0] RtAddr);reg[31:0] regs[0:31];assign RsData = (RsAddr == 5'b0)?32'b0:regs[RsAddr];assign RtData = (RtAddr == 5'b0)?32'b0:regs[RtAddr];integer i;always @(posedge clk)beginif(!reset)beginif(regWriteEn==1)beginregs[regWriteAddr]=regWriteData;endendelsebeginfor(i=0;i<31;i=i+1)regs[i]=0;regs[31]=32'hffffffff;endendendmodule4.ALU设计在这个简单的MIPS指令集中,微处理器支持add、sub、and、or、slt运算指令,需要利用ALU单元实现运算,同时数据存储指令sw、lw也需要ALU单元计算存储器地址,条件跳转指令beq需要ALU来比较两个寄存器是否相等。

所有这些指令包含的操作为加、减、与、或小于设置5种不同的操作。

该模块根据输入控制信号对输入数据进行相应的操作,并获得输出结果以及零标示,由于MIPS处理器ALU单元利用4根输入控制线的译码决定执行何种操作,因此该模块的接口为:输入:input1(32bit),input2(32bit),aluCtr(4bit)输出:zero(1bit),alluRes(32bit)代码如下:module ALU(input [31:0] input1,input [31:0] input2,input [3:0] aluCtr,output [31:0] aluRes,output zero);reg zero;reg[31:0] aluRes;always @(input1 or input2 or aluCtr)begincase(aluCtr)4'b0110:beginaluRes=input1-input2;if(aluRes==0)zero=1;elsezero=0;end4'b0010:aluRes=input1+input2;4'b0000:aluRes=input1&input2;4'b0001:aluRes=input1|input2;4'b1100:aluRes=~(input1|input2);4'b0111:beginif(input1<input2)aluRes = 1;enddefault:aluRes = 0;endcaseendendmodule5.ALU控制设计制信号。

它们之间的对应关系如表所示:因此该模块的主要功能就是根据译码控制单元产生2位操作码以及6位功能码产生4位ALU控制信号,接口为:输入:aluop(2bit),funt(6bit)输出:aluctr(4bit)代码为:module aluctr(input [1:0] ALUOp,input [5:0] funct,output [3:0] ALUCtr);reg[3:0] ALUCtr;always @(ALUOp or funct)casex({ALUOp,funct})8'b00xxxxxx:ALUCtr=4'b0010;8'b01xxxxxx:ALUCtr=4'b0110;8'b11xxxxxx:ALUCtr=4'b0000;8'b10xx0000:ALUCtr=4'b0010;8'b10xx0010:ALUCtr=4'b0110;8'b10xx0100:ALUCtr=4'b0000;8'b10xx0101:ALUCtr=4'b0001;8'b10xx1010:ALUCtr=4'b0111;endcaseendmodule6.控制器设计控制器输入为指令的opCode字段,即操作码。

操作码经过主控制单元的译码,给ALUCtr、Data、Memory、Registers、Muxs等部件输出正的控制信号。

微处理器在执行不同指令时,哥哥控制信号相对应的状态表如下:因此该模块的接口为:输入:opcode(6bit)输出:alusrc,memtoreg,regwrite,memread,memwrite,branch,,aluop[1:0],jmp 代码为:module ctr(input [5:0] opCode,output regDst,output aluSrc,output memToReg,output regWrite,output memRead,output memWrite,output branch,output [1:0] aluop,output jmp);reg regDst;reg aluSrc;reg memToReg;reg regWrite;reg memRead;reg memWrite;reg branch;reg[1:0] aluop;reg jmp; always @(opCode) begincase(opCode)6'b000010://jmpbeginregDst=0;aluSrc=0;memToReg=0;regWrite=0;memRead=0;memWrite=0;branch=0;aluop=2'b00;jmp=1;end6'b000000://RbeginregDst=1;aluSrc=0;memToReg=0;regWrite=1;memRead=0;memWrite=0;branch=0;aluop=2'b10;jmp=0;end6'b100011://lwbeginregDst=0;aluSrc=1;memToReg=1;regWrite=1;memRead=1;memWrite=0;branch=0;aluop=2'b00;jmp=0;end6'b101011://sw beginregDst=0; aluSrc=1; memToReg=0; regWrite=0; memRead=0; memWrite=1; branch=0; aluop=2'b00; jmp=0;end6'b000100://beq beginregDst=0; aluSrc=0; memToReg=0; regWrite=0; memRead=0; memWrite=0; branch=1; aluop=2'b01; jmp=0;end6'b001100://andi beginregDst=0; aluSrc=1; memToReg=0; regWrite=1; memRead=0; memWrite=0; branch=0; aluop=2'b11; jmp=0;enddefault:beginregDst=0; aluSrc=0;memToReg=0;regWrite=0;memRead=0;memWrite=0;branch=0;aluop=2'b00;jmp=0;endendcaseendendmodule7.符号数扩展将16位有符号扩展为32位有符号数。

带符号扩展只需要在前面补足符号即可。

代码为:module signext(input [15:0] inst,output [31:0] data);assign data=inst[15:15]?{16'hffff,inst}:{16'h0000,inst};endmodule8.顶层模块顶层模块需要将前面多个模块实例化,通过导线以及多路复用器将各个部件连接起来,并且在时钟的控制下修改PC的值,PC是一个32位的寄存器,每个时钟沿自动增加4。

相关主题