当前位置:文档之家› 过程控制课程设计

过程控制课程设计

北华航天工业学院课程设计报告(论文)设计课题:过程控制专业班级:学生姓名:指导教师:设计时间:201311.25-2013.12.06北华航天工业学院电子工程系过程控制课程设计任务书姓名:专业:自动化班级:指导教师:职称:副教授学号课程设计题目:前馈-反馈控制系统的设计与整定已知技术参数和设计要求:对三容水箱液位、压力控制系统进行设计。

参数要求:液位控制精度位±5%,压力控制精度为±3%。

1、测试对象获得数学模型。

2、设计前馈-反馈控制系统,选择所有系统部件,并说明选择依据。

3、画出控制系统硬件结构图和系统框图。

4、设计基于组态王软件的监控软件。

5、连接系统进行投运,通过监控软件整定系统控制参数,达到控制精度要求。

6、完成设计报告。

所需仪器设备:PCT-III型过程控制系统教学实验装置、计算机、组态王软件成果验收形式:系统实际运行达到要求设计报告完整、无错误参考文献:《过程控制工程》孙洪程高等教育出版社《过程控制工程手册》周春晖化学工业出版社《PCT-III过程控制使用说明书》浙江求是科教设备有限公司时间安排下发设计任务(第1天)系统设计、连接(第2、3、4天)监控组态程序;(第5、6天)联机调试(第7、8天)撰写课程设计报告(第9天)通过答辩(第10天)指导教师:教研室主任:2013年12月6日内容摘要自本世纪30年代以来,自动化技术获得了惊人的成就,已在工业和国民经济各行各业起着关键的作用。

自动化水平已成为衡量各行各业现代化水平的一个重要标志。

自动控制按输入量的变化规律分类,可分恒值控制系统(Fixed Set-Point Control System)、随动控制系统(Follow-up Control System)、过程控制系统(Process Control System)。

前馈-反馈控制系统的设计与整定,采用自动控制技术,实现对水箱液位的过程控制。

首先对被控对象的模型进行分析。

然后,根据被控对象模型和被控过程特性并加入PID调节器设计流量控制系统,采用动态仿真技术对控制系统的性能进行分析。

关键词:自动化过程控制PID目录一概述 (1)二方案设计与论证 (2)2.1 前馈控制 (2)2.2 反馈控制 (2)2.3 前馈-反馈控制 (3)2.4前馈-反馈控制系统PID算法 (4)2.5 控制方案的论证 (5)2.5.1控制方案的可靠性 (5)2.5.2控制方案的安全性 (5)2.5.3控制方案的经济性 (5)三仪表的选择与参数的设定 (6)3.1 设备型号 (6)3.2 调节器及其参数的设置 (7)3.3 仪器仪表的组合安装 (8)3.4 计算机的参数设置 (9)四实验步骤 (9)五实验结果 (10)六结论 (11)七心得体会 (12)八参考文献 (13)一、概述PCT—I型过程控制实验装置是基于工业过程物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置。

系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识、单回路控制、串级控制、前馈控制、比值控制等多种控制形式。

本装置还可根据用户的需要设计构成DDC、DCS、PLC、FCS、TCS等多种控制系统。

该实验装置既可作为本科、专科、高职过程控制课程的实验装置,也可作为研究生及科研人员在复杂控制系统、先进控制系统研究方面提供物理模拟对象和实现手段。

装置特点:1.装置由控制对象、控制屏、计算机三部分组成,对象构布局合理,造型美观大方。

2.真实性、直观性、综合性强,控制对象元件全部来源于工业现场。

控制屏正面有完整的系统结构图案。

3.参数全面,涵盖了液位、流量、压力、温度等典型参数。

4.PCT-II过程控制实验装置具有控制参数和控制方案的多样化。

该装置可通过对其管路上的阀门切换和对模拟信号接线板上信号的连接组合,可构成数十种过程控制实验。

5.在PCT-II过程控制实验装置中充分考虑了大专院校,高等职业技术学院工业自动化专业的大纲要求,完全能满足教学实验、课程设计、毕业设计的需要,同时学生可自行设计实验方案,进行综合性、创造性过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。

随着对过程控制系统性能要求的不断提高,传统反馈控制策略难以适应不同工况下被控对象动态特性的改变。

提出了前馈-反馈复合控制策略,研究了前馈控制器在物理上不可实现情况下的设计方法,给出了具体操作步骤。

在过程控制系统中应用的仿真结果表明:前馈-反馈复合控制能够将可测扰动在影响系统输出前得以补偿;系统的动态性能和稳定性能均优于传统反馈控制。

解决了扰动通道时滞小于主控通道时,前馈控制器在物理上不可实现的技术难题,对过程控制系统有一定理论意义和工程参考价值。

前馈是通过校正输入来改善控制系统的性能;反馈是通过获得输出误差,进而校正,得到理想的输出;前馈-反馈控制系统中既有针对主要扰动信号进行补偿的前馈控制,又存在对被调量采用反馈控制以克服其他的干扰信号。

引入反馈控制,是为了使系统能克服所有扰动信号对被调量产生的影响;因为除了已知的主要的扰动信号以外,系统中还存在其它的扰动信号,这些扰动信号对被调量的影响比较小,有的是我们能够考虑到的,有的我们根本就考虑不到或无法测量,都通过反馈控制加以克服。

二、方案设计与论证本设计通过前馈反馈控制系统实现对液位的控制。

2.1 前馈控制前馈控制又称扰动补偿,它与反馈调节原理完全不同,是按照引起被调参数变化的干扰大小进行调节的。

在这种调节系统中要直接测量负载干扰量的变化,当干扰刚刚出现并能被测出时,调节器就能发出调节信号使调节量作相应的变化,使两者在被调量发生偏差之前抵消。

因此,前馈调节对干扰的客服比反馈调节及时。

但是前馈控制是开环控制,其控制效果需要通过反馈加以检验。

前馈控制器在测出扰动之后,按过程的某种物质或能量平衡条件计算出校正值。

如果前馈支路出现扰动,经过流量计测量之后,测量得到干扰的大小,然后在反馈支路通过调整调节阀开度,直接进行补偿。

而不需要经过调节器。

在前馈反馈控制系统中,前馈控制属于开环控制,在设计中经过对主流量的检测,及时的针对主要扰动进行液位的偏差抑制。

当流量测量值较预定值发生波动,即时通过计算机进行PID计算,输出控制信号,进行液位调节;反馈控制属于闭环控制,通过对液位的测量,及时对液位进行调控。

反馈环节通过对液位的监测,将测量值与给定值进行比较,形成偏差后,通过A/D传输给计算机,进行预先设定的PID计算,输出控制型号,进行液位调节。

2.2 反馈控制反馈控制(英文名称为Feedback Control),是指从被控对象获取信息,按照偏差的极性而向相反的方向改变控制量,再把调节被控量的作用馈送给控制对象,这种控制方法称为反馈控制,也称作按偏差控制。

反馈控制总是通过闭环来实现的。

反馈控制的特点有:按偏差进行调节;调节量小,失调量小;能随时了解被控变量变化情况;输出影响输入(闭环)。

2.3前馈-反馈控制前馈——反馈复合控制系统中前馈控制器的传递函数是根据完全补偿性原理求解的。

要使得扰动Z(s)得到完全补偿,即Z(s)变化时不对被调量C(s)产生影响,应有:解得:前馈-反馈控制系统的特点:(1)系统综合了反馈、前馈控制系统的优点,弥补了他们的缺点,因而前馈-反馈控制系统得到了广泛的应用。

(2)引入前馈补偿没有影响到系统的稳定性。

很显然,前馈无论加在什么位置,都不会构成回路,系统的特征式都保持不变,因而不会影响系统的稳定性。

(3)引入反馈控制后,前馈完全补偿条件并没有改变。

前馈-反馈系统主要由以下几个环节构成:(1)扰动信号测量变送器:对扰动信号测量并转化统一的电信号。

(2)被调量测量变送器:对被调量测量并转化统一的电信号。

(3)前馈控制器:对干扰信号完全补偿。

(4)调节器:反馈控制调节器,对被调量进行调节。

(5)执行器和调节机构。

(6)扰动通道对象:扰动信号通过该通道对被调量产生影响。

(7)控制通道对象:调节量通过该通道对被调量进行调节。

图1 前馈反馈实验流程图图2 计算机控制前馈反馈控制系统的框图 2.4 前馈反馈控制系统PID 算法前馈反馈控制系统是通过PID 控制规律实现对液位控制的最终目的,PID 控制是比例—积分—微分的简称。

在工业生产工程自动控制的发展历史中,PID 控制是历史最久、生命力最强的基本控制方式。

PID 算法具有以下的优点:比例器-储水箱+下水箱上水箱水泵计算机如图1前馈反馈实验流程图 和图1 计算机控制前馈反馈控制系统的框图(1)原理简单,使用方便;(2)适应性强;(3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。

PID控制即比例积分微分控制,调节器的输出是其输入的比例,积分,微分的函数。

PID控制现在应用最广,技术最成熟。

其控制结构简单,参数容易调整,不必求出被控对象的数学模型便可以调节,因此无论模拟调节器或者数字调节器大都采用PID调节规律。

PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。

其输入e (t)与输出u (t)的关系为u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt] 式中积分的上下限分别是0和t,因此它的传递函数为:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s],其中kp为比例系数; TI为积分时间常数; TD为微分时间常数。

在调节PID控制时,先把微分作用取消掉,只保留PI,先调比例,再调积分,最后加上微分再调。

如果振荡过快,加大P。

如果振荡后过很久才稳定,减小P。

减少积分时间。

如果振荡的周期太长,加大积分时间。

如果对调节对象变化反应过慢,增大D。

最后把波形调到只有一两个振荡就平稳了,就是最好的效果。

2.5 控制方案的论证2.5.1控制方案的可靠性控制方案采用前馈反馈控制,前馈反馈控制技作为一种传统的控制方式,在工业生产过程中,技术上的应用已经相当成熟。

作为液位控制,在要求控制精度的情况下,不能单纯依靠反馈控制,加入前馈控制后,可以消除提前的扰动对反馈控制的影响。

而且对于提前的扰动为已知,比如对液位能够产生的扰动,在这里为管道内的流量,是可以精确测量的量,因此符合采用前馈控制的条件。

使得前馈反馈控制的可靠性得到保证。

2.5.2控制方案的安全性在工业生产过程中,对液位的控制中,容器中的介质类型有很多,可能为常见的水,也可能为化学药剂。

因此控制方案和所用仪器仪表的安全性非常重要。

对于仪器仪表,我们根据介质的性质不同选用合适的型号即可。

对于控制方案,因为是单纯的液位控制,不涉及化学反应等使介质发生变化的过程,所以关键是控制精度的保证,比如在锅炉中要保证水位的高度,避免水位过高飞溅。

相关主题