(声明:此程序为GreenSim团队的原创作品,我们删除了程序中的若干行,一般人是难以将其补充完整并正确运行的,如果有意购买此程序,请与我们联系,Email:greensim@)function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF)%%% SVMNR.m% Support Vector Machine for Nonlinear Regression% ChengAihua,PLA Information Engineering University,ZhengZhou,China% Email:aihuacheng@% All rights reserved%%% 支持向量机非线性回归通用程序% 程序功能:% 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。
本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测% 试需使用与本函数配套的Regression函数。
% 主要参考文献:% 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报% 输入参数列表% X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数% Y 输出样本原始数据,1×l的矩阵,l为样本个数% Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少% C 惩罚系数,C过大或过小,泛化能力变差% TKF Type of Kernel Function 核函数类型% TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归% TKF=2 多项式核函数% TKF=3 径向基核函数% TKF=4 指数核函数% TKF=5 Sigmoid核函数% TKF=任意其它值,自定义核函数% 输出参数列表% Alpha1 α系数% Alpha2 α*系数% Alpha 支持向量的加权系数(α-α*)向量% Flag 1×l标记,0对应非支持向量,1对应边界支持向量,2对应标准支持向量% B 回归方程中的常数项%--------------------------------------------------------------------------%%%-----------------------数据归一化处理--------------------------------------nntwarn offX=premnmx(X);Y=premnmx(Y);%%%%%-----------------------核函数参数初始化------------------------------------ switch TKFcase 1%线性核函数K=sum(x.*y)%没有需要定义的参数case 2%多项式核函数K=(sum(x.*y)+c)^pc=0.1;p=2;case 3%径向基核函数K=exp(-(norm(x-y))^2/(2*sigma^2))sigma=10;case 4%指数核函数K=exp(-norm(x-y)/(2*sigma^2))sigma=10;case 5%Sigmoid核函数K=1/(1+exp(-v*sum(x.*y)+c))v=0.5;c=0;otherwise%自定义核函数,需由用户自行在函数内部修改,注意要同时修改好几处!%暂时定义为K=exp(-(sum((x-y).^2)/(2*sigma^2)))sigma=8;end%%%%%-----------------------构造K矩阵------------------------------------------- l=size(X,2);K=zeros(l,l);%K矩阵初始化for i=1:lfor j=1:lx=X(:,i);y=X(:,j);switch TKF%根据核函数的类型,使用相应的核函数构造K矩阵case 1K(i,j)=sum(x.*y);case 2K(i,j)=(sum(x.*y)+c)^p;case 3K(i,j)=exp(-(norm(x-y))^2/(2*sigma^2));case 4K(i,j)=exp(-norm(x-y)/(2*sigma^2));case 5K(i,j)=1/(1+exp(-v*sum(x.*y)+c));otherwiseK(i,j)=exp(-(sum((x-y).^2)/(2*sigma^2)));endendend%%%%%------------构造二次规划模型的参数H,Ft,Aeq,Beq,lb,ub------------------------ %支持向量机非线性回归,回归函数的系数,要通过求解一个二次规划模型得以确定Beq=0;lb=eps.*ones(2*l,1);ub=C*ones(2*l,1);%%%%%--------------调用优化工具箱quadprog函数求解二次规划------------------------ OPT=optimset;rgeScale='off';OPT.Display='off';%%%%%------------------------整理输出回归方程的系数------------------------------ Alpha1=(Gamma(1:l,1))';Alpha=Alpha1-Alpha2;Flag=2*ones(1,l);%%%%%---------------------------支持向量的分类----------------------------------Err=0.000000000001;for i=1:lAA=Alpha1(i);BB=Alpha2(i);if (abs(AA-0)<=Err)&&(abs(BB-0)<=Err)Flag(i)=0;%非支持向量endif (AA>Err)&&(AA<C-Err)&&(abs(BB-0)<=Err)Flag(i)=2;%标准支持向量endif (abs(AA-0)<=Err)&&(BB>Err)&&(BB<C-Err)Flag(i)=2;%标准支持向量endif (abs(AA-C)<=Err)&&(abs(BB-0)<=Err)Flag(i)=1;%边界支持向量endif (abs(AA-0)<=Err)&&(abs(BB-C)<=Err)Flag(i)=1;%边界支持向量endend%%%%%--------------------计算回归方程中的常数项B--------------------------------- B=0;counter=0;for i=1:lAA=Alpha1(i);BB=Alpha2(i);if (AA>Err)&&(AA<C-Err)&&(abs(BB-0)<=Err)%计算支持向量加权值SUM=0;for j=1:lif Flag(j)>0switch TKFcase 1SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));case 2SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;case 3SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));case 4SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));case 5SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));otherwiseSUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));endendendB=B+b;counter=counter+1;endif (abs(AA-0)<=Err)&&(BB>Err)&&(BB<C-Err)SUM=0;for j=1:lif Flag(j)>0switch TKFcase 1SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));case 2SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;case 3SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));case 4SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));case 5SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));otherwiseSUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));endendendb=Y(i)-SUM+Epsilon;counter=counter+1;endendif counter==0B=0;elseB=B/counter;end为检验支持向量机非线性回归的泛化能力,本文做了如下实验:把第i(i=1,2,…,21)组原始数据样本抽取出来,把剩下的20组数据作为学习样本,输入支持向量机非线性回归的程序,计算相应的非线性回归方程,并把抽取出来的那一组数据作为测试数据,计算输出值,并与其原始值做比较,计算绝对误差和相对误差。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21绝对误差-0.02 0.04 0.05 0.10 0.00 -0.03 -0.05 -0.03 -0.03 -0.08 0.07 -0.09 -0.01 -0.01 -0.02 0.03 -0.02 0.00 0.18 0.13 -0.12相对误差-0.05 0.06 0.09 0.17 0.00 -0.04 -0.08 -0.04 -0.05 -0.11 0.16 -0.16 -0.01 -0.02 -0.04 0.04 -0.02 0.00 0.51 0.26 -0.14平均相对误差为0.0978BP神经网络有着很强的非线性拟合能力,能以任意精度逼近任意非线性连续函数,当然其前提条件是——神经网络构造适当并且训练充分。