基于MA TLAB的IIR数字带通滤波器设计摘要窗函数法在IIR 数字滤波器的设计中有着广泛的应用, 但这不是最优化的设计。
介绍了一种基于等波纹切比雪夫逼近准则的IIR 数字滤波器的最优化设计方法,通过MA TLAB 的仿真实现, 证明了该方法是一种最优化的设计。
传统的数字滤波器设计方法繁琐且结果不直观,本文利用MA TLAB具有强大的科学计算和图形显示这一优点,与窗函数法设计理论相结合共同设计IIR数字滤波器,不但使设计结果更加直观,而且提高了滤波器的设计精度,从而更好地达到预期效果。
关键词:IIR数字滤波器;窗函数,等波纹切比雪夫逼近,MA TLAB 仿真ABSTRACTWindow function method in the design of IIR digital filter has a wide range of applications, but this is not the most optimal design. Such as corrugated paper, a Chebyshev approximation for IIR digital filter criteria for the optimization design method to achieve through the MA TLAB simulation proved that the method is one of the most optimized design. Conventional digital filter design method is cumbersome and results are not intuitive, this paper, MA TLAB has a powerful scientific computing and graphics display the advantages, with the window function method combines design theory to design IIR digital filter design results not only more intuitive, but also improve the accuracy of the filter design to better achieve the desired results.KEY WORDS: IIR digital filters,window function,such as ripple Chebyshev approximation,MA TLAB simulation目录引言.............................................第页第1 章数字滤波器................................第页第2 章IIR数字滤波器设计方法......................第页2.1用脉冲相应不变法设计IIR数字滤波器..........第页2.2 脉冲响应不变法优缺点........................第页2.3用双线性变换法设计IIR数字滤波器............第页2.4双线性变换法优缺点..........................第页第3章IIR数字带通滤波器设计过程...................第页3.1设计步骤.....................................第页3.2程序流程框图.................................第页3.3 MA TLAB程序..................................第页第四章结果及分析.................................第页第五章总结.......................................第页参考文献..........................................第页致谢..............................................第页附录..............................................第页引言随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。
目前数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。
在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter),根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应IIR(Infinite Impulse Response)滤波器和有限冲激响应FIR(Finite Impulse Response)滤波器。
与FIR滤波器相比,IIR的实现采用的是递归结构,极点须在单位圆内,在相同设计指标下,实现IIR滤波器的阶次较低,即所用的存储单元少,从而经济效率高。
MA TLAB是英文MA Trix LABoratory(矩阵实验室)的缩写。
它是美国的MathWorks公司推出的一套用于科学计算和图形处理可视化、高性能语言与软件环境。
它的信号处理工具箱包含了各种经典的和现代的数字信号处理技术,是一个非常优秀的算法研究与辅助设计的工具。
在设计数字滤波器时通常采用MA TLAB来进行辅助设计和仿真。
本文以MA TLAB7. 1为设计平台,利用MA TLAB完全工具函数Ellip与SPTool工具进行IIR数字带通滤波器的设计,并加以仿真。
2 数字滤波器的基本概念滤波器的种类很多,从功能上可分为低通、高通、带通和带阻滤波器,每一种又有模拟滤波器和数字滤波器两种形式。
如果滤波器的输人和输出都是离散时间信号,则该滤波器的冲击响应也必然是离散的,这种滤波器称之为数字滤波器。
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
数字滤波器也是具有一定传输选择特性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。
第1章数字滤波器数字滤波器是对数字信号实现滤波的线性时不变系统。
数字滤波实质上是一种运算过程,实现对信号的运算处理。
设计IIR滤波器的任务就是寻求一个物理上可实现的系统函数H(z),使其频率响应H(z)满足所希望得到的频域指标,即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减系数。
描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。
时域离散系统的频域特性: , 式(1-1)其中、分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性), 是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。
输入序列的频谱经过滤波后,因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择,使得滤波后的满足设计的要求,这就是数字滤波器的滤波原理。
数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。
IIR 数字滤波器的特征是,具有无限持续时间冲激响应,需要用递归模型来实现,其差分方程为:式(1-2)式(1-4)系统函数为式(1-4)第2章IIR数字滤波器设计方法IIR数字滤波器是一种离散时间系统,其系统函数为:假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。
IIR数字滤波器的设计实际上是求解滤波器的系数和,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。
如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。
2.1 用脉冲相应不变法设计IIR数字滤波器利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。
脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应ha(t),即将ha(t)进行等间隔采样,使h(n)正好等于ha(t)的采样值,满足h(n)=ha(nT)式中,T是采样周期。
如果令Ha(s)是ha(t)的拉普拉斯变换,H(z)为h(n)的Z变换,利用采样序列的Z变换与模拟信号的拉普拉斯变换的关系得(2-1)则可看出,脉冲响应不变法将模拟滤波器的S平面变换成数字滤波器的Z平面,这个从s到z的变换z=esT是从S平面变换到Z平面的标准变换关系式。
图2-1脉冲响应不变法的映射关系由(2-1)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为式(2-2)这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。
正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即式(2-3)才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即|ω|<π(2-4)但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图7-4所示。
这时数字滤波器的频响就不同于原模拟滤波器的频响,而带有一定的失真。
当模拟滤波器的频率响应在折叠频率以上处衰减越大、越快时,变换后频率响应混叠失真就越小。
这时,采用脉冲响应不变法设计的数字滤波器才能得到良好的效果。
图2-2脉冲响应不变法中的频响混叠现象对某一模拟滤波器的单位冲激响应ha(t)进行采样,采样频率为fs,若使fs增加,即令采样时间间隔(T=1/fs)减小,则系统频率响应各周期延拓分量之间相距更远,因而可减小频率响应的混叠效应。
2.2 脉冲响应不变法优缺点从以上讨论可以看出,脉冲响应不变法使得数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,也就是时域逼近良好,而且模拟频率Ω和数字频率ω之间呈线性关系ω=ΩT。
因而,一个线性相位的模拟滤波器(例如贝塞尔滤波器)通过脉冲响应不变法得到的仍然是一个线性相位的数字滤波器。
脉冲响应不变法的最大缺点是有频率响应的混叠效应。
所以,脉冲响应不变法只适用于限带的模拟滤波器(例如,衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小。
至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。
如果要对高通和带阻滤波器采用脉冲响应不变法,就必须先对高通和带阻滤波器加一保护滤波器,滤掉高于折叠频率以上的频率,然后再使用脉冲响应不变法转换为数字滤波器。