高中物理稳恒电流解题技巧及练习题一、稳恒电流专项训练1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
(1)实验时有两个滑动变阻器可供选择:a、阻值0到200Ω,额定电流b、阻值0到20Ω,额定电流本实验应选的滑动变阻器是(填“a”或“b”)(2)正确接线后,测得数据如下表12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.400.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(mA)a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”)b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)【答案】(1) a(2) a) Pb)【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。
B电阻的额定电流为,加在它上面的最大电压为10V,所以仪器不能正常使用,而选择a。
(2)电压表并联在M与P之间。
因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P点。
视频2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm 金属丝直径为(1.5+0.380) mm="1.880" mm .(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0VA 0100,0.5R R R R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =-220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放4.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。
均匀金属棒ab 和ef 质量均为m ,长均为L ,ab 棒初始位置在水平导轨上与NQ 重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止。
空间有方向竖直的匀强磁场(图中未画出)。
两金属棒与导轨保持良好接触。
不计所有导轨和ab 棒的电阻,ef 棒的阻值为R ,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g 。
(1)若磁感应强度大小为B ,给ab 棒一个垂直于NQ 、水平向右的速度v 1,在水平导轨上沿运动方向滑行一段距离后停止,ef 棒始终静止,求此过程ef 棒上产生的热量; (2)在(1)问过程中,ab 棒滑行距离为d ,求通过ab 棒某横截面的电荷量; (3)若ab 棒以垂直于NQ 的速度v 2在水平导轨上向右匀速运动,并在NQ 位置时取走小立柱1和2,且运动过程中ef 棒始终静止。
求此状态下最强磁场的磁感应强度及此磁场下ab 棒运动的最大距离。
【答案】(1)Q ef=;(2)q=;(3)B m=,方向竖直向上或竖直向下均可,x m=【解析】解:(1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生热量分别为Q和Q1,有Q+Q1=E k①且Q=Q1 ②由题意 E k=③得 Q=④(2)设在题设的过程中,ab棒滑行的时间为△t,扫过的导轨间的面积为△S,通过△S的磁通量为△Φ,ab棒产生的电动势为E,ab棒中的电流为I,通过ab棒某截面的电荷量为q,则E=⑤且△Φ=B△S ⑥电流 I=⑦又有 I=⑧由图所示,△S=d(L﹣dcotθ)⑨联立⑤~⑨,解得:q=(10)(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为:L x=L﹣2xcotθ (11)此时,ab棒产生的电动势E x为:E=Bv2L x (12)流过ef棒的电流I x为 I x=(13)ef棒所受安培力F x为 F x=BI x L (14)联立(11)~(14),解得:F x=(15)有(15)式可得,F x在x=0和B为最大值B m时有最大值F1.由题意知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图所示,图中f m为最大静摩擦力,有:F1cosα=mgsinα+μ(mgcosα+F1sinα)(16)联立(15)(16),得:B m=(17)B m就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.有(15)式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值,如图可知F2cosα++μ(mgcosα+F2sinα)=mgsinα (18)联立(15)(17)(18),得x m=答:(1)ef棒上产生的热量为;(2)通过ab棒某横截面的电量为.(3)此状态下最强磁场的磁感应强度是,磁场下ab棒运动的最大距离是.【点评】本题是对法拉第电磁感应定律的考查,解决本题的关键是分析清楚棒的受力的情况,找出磁感应强度的关系式是本题的重点.5.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少. 【答案】(1)2V (2)4J 【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J6.一根粗细均匀的金属导线,两端加上恒定电压10 V 时,通过金属导线的电流为2 A ,求:①金属导线电阻;②金属导线在10 s 内产生的热量. 【答案】(1)5 Ω (2)200 J【解析】试题分析:根据欧姆定律和焦耳定律即可解题。
(1)根据欧姆定律: 1052U R I ==Ω=Ω。
(2)产生的热量为: 2Q I Rt =,代入数据得: 200Q J = 点睛:本题主要考查了欧姆定律和焦耳定律,此题为基础题。
7.一交流电压随时间变化的图象如图所示.若用此交流电为一台微电子控制的电热水瓶供电,电热水瓶恰能正常工作.加热时的电功率P =880W ,保温时的电功率P ′=20W .求:①该交流电电压的有效值U ; ②电热水瓶加热时通过的电流I ;. ③电热水瓶保温5h 消耗的电能E . 【答案】①220V ②4A ③53.610J ⨯【解析】①根据图像可知,交流电电压的最大值为:2202m U V =, 则该交流电电压的有效值为:2202mU V ==; ②电热水瓶加热时,由P UI =得:8804220P I A A U === ③电热水瓶保温5h 消耗的电能为:52053600 3.610W P t J J ='=⨯⨯=⨯点睛:本题根据交流电图象要能正确求解最大值、有效值、周期、频率等物理量,要明确功率公式P UI =对交流电同样适用,不过U 、I 都要用有效值.8.如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n =100匝,电阻r =1Ω,长l 1=0.5m ,宽l 2=0.4m ,角速度ω=10rad/s .磁场的磁感强度B =0.2T .线圈两端外接电阻R =9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值; (2)电流表的读数; (3)电阻R 上消耗的电功率.【答案】(1)40V ;(2)2.82A ;(3)72W . 【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V ; (2)线圈中产生感应拘泥于的最大值I=ER r+=4A 2=2.82A ;(3)电阻R 上消耗的电功率P=(2.82A )2×9Ω=72W . 考点:感应电动势,欧姆定律,电功率的计算.9.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d =4.0cm .电源电动势E =400V ,内电阻r =20Ω,电阻R 1=1980Ω.闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v 0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板.若小球所带电荷量q =1.0×10-7C ,质量m =2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g =10m/s 2.求:(1)A 、B 两金属板间的电压的大小U ; (2)滑动变阻器消耗的电功率P ; (3)电源的效率η.【答案】(1)U =200V (2)20W (3)0099.5 【解析】 【详解】(1)小球从B 板上的小孔射入恰好到达A 板的过程中,在电场力和重力作用下做匀减速直线运动,设A 、B 两极板间电压为U ,根据动能定理有:20102qU mgd mv --=-,解得:U = 200 V .(2)设此时滑动变阻器接入电路中的电阻值为R ,根据闭合电路欧姆定律可知,电路中的电流1EI R R r=++,而 U = IR ,解得:R = 2×103 Ω滑动变阻器消耗的电功率220U P W R==.(3)电源的效率2121()099.50()P I R R P I R R r η+===++出总. 【点睛】本题电场与电路的综合应用,小球在电场中做匀减速运动,由动能定理求电压.根据电路的结构,由欧姆定律求变阻器接入电路的电阻.10.电源是通过非静电力做功把其他形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势来表明电源的这种特性。