当前位置:
文档之家› 《测井储层评价方法》核磁共振测井CMR
《测井储层评价方法》核磁共振测井CMR
(msec) 1500
T2 Distribution
4、核磁共振测井的应用基础
1/T2 = 1/T2B + 1/T2S + 1/T2D = 1/T2B + ρ2Si/Vi + [D(γGTE)2]/12
式中: D为扩散系数; G为磁场梯度; γ为旋磁比; TE为回波间隔(2τ);
ρ2 为 横 向 表 面 弛 豫 强 度 ( 常 数 , 一 般 为 1um/s<=ρ2<=30um/s))
Signal distribution
T2 time k = 279 md
Signal distribution
Pore diameter (microns)
0.01 0.1 1
10
T2 original T2 spun sample
Free fluid cutoff
• 自由流体和 束缚流体孔隙度
—旋磁比;—自旋角动量
无外加磁场时, 核磁矩随机取 向, 宏观磁场强度 为零
• 自旋在外加磁场中进动
单个自旋(核磁矩 )处 于外加静磁场Bo中时,它将受 到一个力矩的作用,并绕外加 磁场方向进动,如右图所示。
其行为如同(自旋)陀螺 绕重力场进动一样。
核磁矩进动频率ω o由拉 莫尔方程确定:
10
15
20
25
(p.u.)
CMR Wellsite Presentation
900
Spectroscopy Gamma Ray (SGR)
0
(GAPI)
150 1
Permeability - CMR (KCMR)
(MD)
1000
CMR Free Fluid (CMFF)
0.3
(V/V)
0
T2 Distribution (INWF)
30.0
(p.u.)
-10.0
WIG
Gamma Ray
0.1
(ohm-m) 1000.0
CMR Free Fluid
200.0
(GAPI)
0.0
30.0
Laterolog Log Deep
(p.u.)
-10.0
Caliper CALI from LDT
6.0
(in.) 16.0
0.1
(ohm-m) 1000.0
= E(0) = Pi
• Initial signal amplitude provides CMR porosity
• 岩石孔径分布
孔径不同,比表面积不同, 弛豫速率不同。
Pore
Signal amplitude
Time (T)
Pore
Signal amplitude
Time (T)
Will the Well Produce?
XX250
1:240 ft
Gamma Ray
0.0
150.0 100.0
Cali
(GAPI)
7 (in.) 17
Geo-column
Sw (p.u.)
CMR Porosity
Effective Porosity
0.0 30.0 (p.u.) -10.0 25.0 (p.u.) 0.0
CMR Free Fluid
Only fluids in the Cylinders are visible
24in
760 kHz
580 kHz
~16in
~1in
CMR logs
7300
1:240 ft 0.0
Gamma Ray (GAPI) 200.0
Micro Spherically Focused Log
CMR Porosity
Porosity
= 20%
Permeability = 7.5 md
Increasing relaxation time
Porosity
= 19.5%
Permeability = 279 md
Increasing relaxation time
Signal distribution
T2 time k = 7.5 md
XX250
1:240 ft
Clay Sandstone
Salt Limestone
CMR Perm 0.01 (md) 100.0
Effective Porosity
Water 25.0
(p.u.)
0.0
Saturation
Perm
100.0 0.0 (p.u.)
CMR bfv
25.0
0.0
WIG
Dolomite Anhydrite Hydrocarbon
CMR Oil Show
0.08 Laterolog Log Deep
(p.u.) -0.020 1
BFV 33msec line (msec) 1500
0.003
T2 Log (S)
0.1 1
(ohm-m) 1000.0 0.0
Mud Log Show
210msec oil/water line
(Gas Units.) 1000.0 1
• 计算渗透率
SDR模型:k = C(CMR)4(T2,log)2 Timur 模型:k = ( CMR/C)4(FPFrofldIuuidc/siblBe VI)2
NMR Free Fluid Porosity vs Centrifuge Porosity
20 Well A Well B
15
纵向弛豫:Z方向的纵向分量往初始宏观磁化矢量 Mo的数值恢复 ,称为纵向弛豫过程。其速率用1/T1表 示,T1 叫做纵向弛豫时间。
Bo
z Mz M
y Mxy x
relaxation
Bo zM
y x
纵向弛豫时间T1(极化时间)
t
M Z (t) M 0 (1 e T1 )
t ——质子处于静磁场中的时间; Mz(t)——B0的方向沿z轴方向时,在时间t时磁化矢量的强度; Mo——在给定磁场中最终和最大的磁化矢量; T1——磁化量达到最终值63%所需的时间,三倍的T1是95%极化所需要的时间。
BMNO-D
LDT Caliper
BMIN
Core Permeability
Core Porosity
125
(mm)
375
0
50
(ohm-m)
0.01
()
100 0.2
(m3/m3)
0
Bit Size
BMNO
CMR Permeability
CMR Porosity
125
(mm)
375 0
50 0.01
4、核磁共振测井的应用 • 孔隙度测量
CMR porosity = 100%
Signal amplitude
CMR porosity
Water in test tube T2 = 3700 msec
Water in pore space of rock T2 = 10 to 500 msec
Time (T2)
Pad 1 Az
FMI images
2023.30 1498.41 1181.06
971.60 796.53 634.51 457.76 220.42
NMR Permeability and Crossplot Porosity vs Conventional Core Brine Permeability
103
103
102
102
k(md) 101
101
100
100
10-1 10-1
100
101
102
kestimate (md)
10-1 103 5
Hydrocarbon Water
Irreducible Water
BFV 33msec line
1
(msec)
3000
T2 Distribution
Irreducible Water Saturation
2810
CMR High Resolution
2815
2820
Hole Az
1:20 ft
(四)核磁共振测井
CMR
组合式 (核)磁 共振测井仪
Combinable Magnetic Resonance Tool
MRIL--Magnetic Resonance Imaging Log Numar & Atlas
1、原理(Fundamental principles)
• 氢核的磁性: 核自旋产生磁场,核磁矩矢量 =
N
Wear plate
Permanent magnets 4.625 in. [12 cm]
核磁共振测井(MRIL)
Borehole
MRIL Probe
9 Sensitive Volume Cylinders
(each 1 mm thick at approximately 1 mm spacing)
y
能态的核磁矩通过吸收交变电磁场B1提供 x
的能量,跃迁到高能态。
自旋系统发生共振吸收时,其宏观磁化
矢量M将偏离静磁场Bo方向,偏离角θ 取
决于交变电磁场B1的大小及其作用时间tp
长短
B1
Bo M
z
y
x
θ =γ tp B1
• 磁共振(Magnetic Resonance)与弛豫(Relaxation)
0
(US)
1000
T2 LOG Mean (T2 LM)