当前位置:文档之家› 无刷直流电动机调速系统设计说明

无刷直流电动机调速系统设计说明

目录1绪论 (1)1.1 直流无刷电动机发展状况 (1)1.2直流无刷电机控制技术的发展 (1)2 直流无刷电动机的工作原理 (2)2.1 直流无刷电动机的结构与原理 (2)2.2三相绕组直流无刷电动机控制主回路的基本类型 (4)2.3直流无刷电动机控制系统中的PWM控制器 (5)3 直流无刷电动机控制系统的数学模型 (6)3. 1直流无刷电动机的基本方程 (7)3. 2直流无刷电动机控制系统的动态数学模型 (10)4 硬件电路 (12)4.1 主电路 (12)4.2换相电路 (14)5 软件部分设计 (17)5. 1软件总体构成 (17)5. 2主程序的设计 (17)5. 3中断子程序的设计 (19)结论 (21)参考文献 (22)致谢 .............................................................. 错误!未定义书签。

1绪论1.1 直流无刷电动机发展状况电动机作为机电能量转换装置,其应用围已经遍及国民经济的各个领域,电动机主要类型有同步电动机、异步电动机与直流电动机三种。

直流电动机具有运行效率高和调速性能好等诸多优点,因此被广泛应用于各种调速系统中。

但传统的直流电动机均采用机械电刷的方式进行换向,存在相对的机械摩擦,和由此带来的噪声、火花、无线电干扰以及寿命短等致命弱点。

因此,早在1917年,Bulgier就提出了用整流管代替有刷直流电机的机械电刷,从而诞生了无刷直流电机(BLDCM: Brushless Direct Current Motor)的基本思想。

1955年,美国D·Harrison等人首次申请了用晶体管换向线路代替有刷直流电机机械电刷的专利,标志着无刷直流电机的诞生。

1978年,原联邦德国MANNESMANN公司的Indramat分部在汉诺威贸易展览会上正式推出其MAC永磁无刷直流电机及其驱动系统,标志着永磁无刷直流电机真正进入了实用阶段。

二十世纪80年代国际上对无刷电机开展了深入的研究,先后研制成方波和正弦波无刷直流电机,在10多年的时间里,无刷直流电机在国际上己得到较为充分的发展。

现代电力电子器件工艺日臻成熟,出现了功率晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET),特别是绝缘栅双极晶体管(IGBT ), MOS可控晶闸管(IGCT)的开发成功,使无刷直流电机功率驱动电路的可靠性和稳定性得到保障。

直流无刷电动机的发展也使得传统的电机学科同当代许多新技术的发展密切相关。

随着大功率半导体器件、电力电子技术、微电子技术、数字信号处理技术、现代控制理论的发展以及高性能永磁材料的不断出现,如今的无刷直流电机系统己经成为集特种电动机、功率驱动器、检测元件、控制软件与硬件于一体的典型的机电一体化产品,体现了当今工程科学领域的许多最新成果。

1.2直流无刷电机控制技术的发展常规控制器(PID控制)尽管控制精度较高,但它需要建立描述动态系统的精确的数学模型,对于未知动态变化的系统要建立精确的数学模型是比较困难的。

比如干扰、参数漂移和噪声等不可能在很高的精度下进行模型化。

直流无刷电机是一个多变量、非线性、强耦合的对象,因此利用模糊控制、神经网络控制、自适应控制、专家系统等具有自学习、自适应、自组织功能的智能控制来进行无刷直流电机的控制是一种有效的手段,控制器的计算和存储能力的不断增强也为这些先进控制算法的实现提供了有利的条件。

直流无刷电动机控制技术发展经历了如下的发展过程:(1)无位置传感器控制对于无刷电动机,由于它具有体积、重量轻、结构简单、维护方便、运行可靠的优点所以备受欢迎。

但是无刷电动机要实现旋转,就要实时的检测出转子的位置实现正确换相。

所以位置的检测和换相技术的研究是直流无刷电动机控制目前的一个方面。

最常用的方式是采用传感器的方式。

这种方式可以正确的检测转子位置信号,但是由于传感器的安装不仅会使电机的体积增大,而且传感器也难于安装和维修。

因此无传感器的传动控制引起国外学术界很大的重视,成为近年的研究热点。

(2)变结构控制由无刷电机组成的控制系统,为了提高它的控制性能,人们也在使用一些新型的控制策略。

变结构控制由于具有响应速度快、对控制对象参数变化及外部扰动不灵敏、物理实现简单等优点,人们开始将直流无刷电机采用变结构控。

(3)模糊控制和PID相结合的Fuzzy-PID控制在控制系统中,如何在较宽调速围提高电流调节特性以及减小力矩波动一直是系统研究的焦点。

模糊控制是近年来研究的热点,它不依赖于被控对象的精确的数学模型,对系统的动态响应有较好的鲁棒性;PID控制方法可以很好的消除系统的稳态误差,所以人们将两者结合也用于直流无刷电机的控制系统,使系统同时兼有两种方法的优点。

采用Fuzzy-PID复合控制,系统具有Fuzzy和PID控制的双重优点,响应快,速度无超调,调速围宽,可达1:10000,定位精度高,在不同的负载下具有较强的鲁棒性。

2 直流无刷电动机的工作原理2.1 直流无刷电动机的结构与原理直流无刷电动机的结构原理如图2-1所示。

图 2-1直流无刷电动机的结构原理图从图2-1可见直流无刷电动机组件主要由电动机本体、位置传感器和电子开关线路三部分构成。

其定子绕组一般制成多相,转子由永磁材料制成。

电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其它起动装置。

其定子绕组一般制成多相Z=2,4)组成。

定子绕组(三相、四相、五相不等),转子由永久磁钢按一定极对数(p分别与电子开关线路中相应的功率开关器件联接。

位置传感器的跟踪转子与电动机转轴相联接。

当电子绕组的某一相通电时,该电流与转子磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置信号变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。

因此平常所说的直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、电动机本体及位置传感器三部分组成的电动机系统。

直流无刷电动机的组成原理框图如图2-2所示。

直流无刷电动机电子开关线路用来控制电动机定子上各相绕组通电的顺序和时间,主要由功率逻辑开关单元和位置传感器信号处理单元两部分组成。

功率逻辑开关单元是控制电路的核心,它的功能是将电源的功率以一定逻辑关系分配给直流无刷电动机定子上各相绕组,以便使直流无刷电动机产生持续不断的转矩,而各相绕组导通顺序和时间主要取决于来自位置传感器的信号,但位置传感器产生的信号一般不能直接用来控制功率单元,常需要经过一定的逻辑处理后才能去控制功率单元。

与有刷直流电动机区别的是:有刷直流电动机必须有一个滑动的接触一电刷和换向器,通过它们把电流反馈给旋转着的电枢。

综上所述,构成直流无刷电动机的主要部件框图如图2-3所示。

2.2三相绕组直流无刷电动机控制主回路的基本类型直流无刷电动机的应用,己遍及各个技术领域其控制方法和运行方式也层出不穷,其他一切直流电动机的转速控制方法均可以用来控制直流无刷电动机。

前己指出,直流无刷电动机实际上是一个由电动机本体,功率管、主回路及转子磁钢位置传感器等部分组成的闭环控制系统。

为了讨论方便起见把功率管主回路和转子磁钢位置传感器合并在一起称之为电子换相器,其主要功能是保证电动机定子绕组准确换相,确保直流无刷电动机在运行过程中定转子两磁场始终保持基本垂直,以提高运行效率。

因此根据功率管主回路的不同和换相控制器件的不同也就派生出了诸多典型控制电路。

主要有以下几种:①分立元件全模拟电路;②专用集成控制电路;③数模混合控制电路;④全数字控制电路。

其中全模拟电路在无刷直流电动机中曾被广泛应用,目前在许多经济实用型的无刷直流电动机中仍占着主导的地位。

但是,由于模拟电路不可避免的存在参数的漂移和不一致问题,以及线路复杂,调试不方便等因素,因而使电动机的可靠性和其它性能受到影响。

至于什么情况下选用什么样的控制电路则应根据对电路的精度要求与实际条件确定。

2.3直流无刷电动机控制系统中的PWM控制器晶闸管变流器构成的直流调速由于其线路简单控制灵活、体积小、效率高以及无旋转噪声和无磨损等优点,在一般工业应用中,特别是大功率系统中一直占据着主要的地位。

但是当系统运行在较低速时,晶闸管的导电角很小,系统的功率因数相应也很小,并产生较大的谐波电流,使转矩脉动大,限制了调速围。

要克服上述问题必须加大平波电抗器的电感量,但电感大又限制了系统的快速性,此外,功率因数低,谐波电流大,还将引起电网电压波形畸变,变流器设备容量大,还将造成所谓的“电力公害”,在这种情况下必须增设无功补偿和谐波滤波装置。

随着电力电子技术的发展,出现了可控关断的即自关断电力电子器件,即全控式器件。

如大功率晶体管(GTR)、电力场效应晶体管(power MOSFET)、可关断晶闸管(GTO)、MOS控制晶闸管(MCT) 、绝缘栅门极控制晶体管(IGBT)等自关断器件,采用全控型开关器件很容易实现脉冲宽度调制,与半控型开关器件晶闸管变流器相比,体积可缩小百分之三十以上,装置效率高,功率因数高。

同时由于开关频率的提高,直流脉冲宽度调制(PWM-EM)调速控制系统与V—M调速控制系统相比,电流容易连续,谐波少,电机损耗和发热都较小,低速性能好,稳精度高,系统通频带宽,快速响应性能好,动态抗扰能力强。

直流无刷电动机是以电子换向线路和转子位置检测器代替传统直流电动机的机械换向装置而组成的新型电机。

下面结合直流无刷电动机和PWM控制技术的特点来分析直流无刷电动机中的PWM控制系统。

脉冲宽度调制(Pulse Width Modulation)简称PWM,它是通过功率管开关作用将恒定直流电压转换成频率一定,宽度可调的方波脉冲电压,通过调节脉冲电压的宽度,改变输出电压的平均值的一种功率变换技术。

由脉冲宽度调制变换器向电动机供电的系统称为脉冲宽度调制调速控制系统,简称PWM调速系统。

由于PWM 控制器的主电路元件工作在开关状态,因此控制器的损耗小,效率高。

直流无刷电动机PMW控制器可分成两大部分:控制电路和逆变主电路。

PWM控制系统的控制电路由脉宽调制器、逻辑延时环节、脉冲分配和功率管驱动电路、保护电路等基本电路组成。

PMW 控制系统的主电路采用脉宽调制式变换器,简称PMW变换器。

PMW 变换器分为不可逆和可逆两类。

不可逆PWM变换器仅在一、二两个象限中运行,可逆PMW 变换器则可在四个象限中运行,工作于正转电动、正转制动、反转电动和反转制动四种状态,因而,伺服系统中多采用可逆PMW变换器。

可逆PMW变换器常用H型桥式变换器结构型式,它在控制上分为双极式、单极式和受限单极式三种。

相关主题