一、电解电容寿命设计本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。
首先,电容等效成电容、电阻(ESR )和电感(ESL )的串联。
关于此请参考其他资料,接下来演示电容寿命计算步骤:1 、纹波电流计算纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。
铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值:控制某一纹波电压所需的电容容值为:P: 负载功率(单位W )注意:这是应用所需要的最小电容容值。
此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。
必须知道主线及负载侧的纹波电流数据。
可以首先计算出电容的充电时间。
f main是电网电流的频率。
电容的放电时间则为:充电电流的峰值为dU 是纹波电压(U max – U min)则充电电流有效值:接下来计算放电电流峰值和有效值。
最后计算得出:整流模块后纹波电流:这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。
2 、计算功率损耗在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和:3 、计算电容中心点温度得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度:其中:Th 电容为电容中心点温度, 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。
Rth 为电容的热阻,其值和风速等有关,Ta 表示电容表面温度。
P Loss 为纹波电流的中损耗。
4 、计算电容寿命得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降10 度,其寿命增加一倍,反过来也就是电容温度升高10 度,电容寿命减小一倍:Lop 为电容工作寿命,即设计寿命Lo 为电容在最大温度时的寿命Tmax 为电容的最大工作温度,在电容的说明书上会有电容的最大温度值Th 为电容的实际工作时候的温度,也即以上计算出来的电容中心点温度。
以上Lo 和Tmax 都是电容产品规格书上的数据,Th 我们已经计算出来,故可以得到电容的设计寿命。
其中阿列纽斯理论是一个经验总结的理论,各个厂商可能有自己的寿命计算公式,可以向各个厂商咨询,在本栏目的电容设计中也有介绍各个知名厂商的电容寿命计算公式,各位可以参考。
以上是电容寿命估算的一般步骤,当然,如果已经设计好了产品,我们还有一种方法来估计电容寿命,即已经有产品,我们来检验电容寿命设计是否合理,我们可以通过测试电容中心点温度的方法,然后通过电容的寿命计算公式来检验。
二、影响电解电容寿命的因素电解电容是电力电子设计中的一个关键性的元件。
在电力电子中不同的应用领域对电解电容的要求也不同。
但大多数应用中,大都要求电容具有高纹波电流值,同时要求电容适应较高的环境温度。
电解电容在应用于平滑、储存能量或者交流电压的滤波时,会载有交流纹波电流,此纹波电流将导致能量损耗并使电容变热。
由于电解电容的寿命取决于其内部温度,我们应该特别注意这些因素。
电解电容是电力电子电路中最贵的元器件之一,鉴于这个原因,元器件的寿命应受到特别的关注。
尤其是在由一系列电容组成的电容组的应用中。
大多数情况下,电解电容是有寿命的器件,因此了解、影响电容寿命的因素非常重要,以便使电容的预期寿命能满足整个电路性能可靠性的要求。
一些因素会引起电解电容失效,如极低的温度,电容温升(焊接温度,环境温度,交流纹波),过高的电压,瞬时电压,甚高频或反偏压;其中温升是对电解电容工作寿命(Lop) 影响最大的因素。
除了非正常的失效,电解电容的寿命与温度有指数级的关系。
因使用非固态电解液,电解电容的寿命还取决于电解液的蒸发速度,由此导致的电气性能降低。
这些参数包括电容的容值,漏电流和等效串联电阻(ESR )。
电容内部的温升,取决于等效串联电阻(ESR ),流过的纹波电流均方根值(RMS ),以及热特性。
电容内部温度最高的点,叫热点温度(Th )。
热点温度值是影响电容工作寿命的主要因素。
而下列因素又决定了热点温度值实际应用中的外界温度(环境温度Ta ), 从热点传递到周围环境的总的热阻(R th )和由交流电流引起的能量损耗(P LOSS )。
电容的内部温升与能量损耗成线形关系。
电容充放电时,电流在流过电阻时会引起能量损耗,电压的变化在通过电介质时也会引起能量损耗,再加上漏电流造成的能量损耗,所有的这些损耗导致的结果是电容内部温度升高。
下面我们来看怎样计算电容的工作寿命。
P LOSS = (I RMS ) ² x ESRT h = T a + P LOSS x R thB = 参考温度值(典型值为85 ℃)A = 参考温度下的电容寿命(根据电容器直径的不同而变化)C = 导致电容寿命减少一半所需的温升度数( 螺栓端电容的典型温度为12 ℃)在非固态电解液的电容里,电介质为阳极铝箔氧化层。
电解液作为阴极铝箔和阳极铝箔氧化层之间的电接触。
吸收电解液的纸介层成为阴极铝箔与阳极铝箔之间的隔离层,铝箔通过电极引接片连接到电容的终端。
电容的导电能力由电解液的电离能力和粘度决定。
当温度降低时,电解液粘度增加,因而离子移动性和导电能力降低。
当电解液冷冻时,离子移动能力非常低以致非常高的电阻。
相反,过高的热量将加速电解液蒸发,当电解液的量减少到一定极限时,电容寿命也就终止了。
直接和间接地提高电容寿命的主要因素是哪些呢?应用于电力电子领域的电解电容经常工作在高纹波电流状态和较高的环境温度中,可以用以下三种方式延长工作寿命·通过降低ESR 值,可减少电容内由纹波电流引起的内部温升。
这可通过采用多个电极引接片、激光焊接电极等措施实现。
ESR 值和纹波电流决定了电容的温升。
而ESR 值与频率具有相关性,这增加了计算电容能量损失的复杂性。
但Evox Rifa 公司的设计提供了较平坦的ESR 特性,即使在较低的交流频率下仍有较好的ESR 性能,通常情况下,频率高时,ESR 值较低。
促使电容能有满意的ESR 值的主要措施之一是:通常用一个或多个金属电极引接片连接外部电极和芯包。
芯包上的电极引接片越多,电容的ESR 值越低。
然而,电极引接片的数量受到电容稳定性的限制(取决于连接电极引接片和电极的加工过程)。
借助于Evox Rifa 公司开发的激光焊接技术,可在芯包上加上更多的电极引接片,因此使电容能达到较低的ESR 值。
这也意味着电容能经受更高的纹波电流和具有较低内部温升,也就是说更长的工作寿命。
这样做也有利于提高电容抗击震动的能力,否则有可能导致内部短路、高的漏电流、容值损失、ESR 值的上升和电路开路。
·通过对电容芯包和铝壳底部之间良好的机械接触及通过芯包中间的热沉,可将电容内部热量有效地从铝壳底部释放到与之联接的底板。
内部热传导设计对于电容的稳定性和工作寿命极其重要。
将负极铝箔被延长到可直接接触电容铝壳厚的底部。
这底部就成为芯包的散热片,以使热点的热量能释放。
如选用带螺栓安装方式,安全地将电容安装到底板上(通常为铝板),可得到更为全面的具有较低热阻(R th . )的热传导解决方案。
·通过采用整体绕注有电极的酚醛塑料盖和双重的特制的封垫与铝壳紧密咬合,可大大减少电解液的损失。
电解液通过密封垫的蒸发决定了长寿命的电解电容工作时间。
当电容的电解液蒸发到一定程度,电容将最终失效(这个结果会因内部温升而加速)。
以上这些特性保证了电容在要求的领域中具有很长的工作寿命。
同时,如果对具体应用有较好的理解。
电容寿命结束的定义如先前所讨论过的,温升是最关键的因素。
电容越热,电容的寿命越短。
温度不断的升高将在电容的容值、电解液导电性、铝材料的热阻、漏电流、化学性能的不稳定和腐蚀过程各方面引起变化。
随着电容的老化,容值降低,ESR 值增加,电容寿命要根据具体应用来界定。
在某些电路中,如果只允许容值和ESR 值发生很小的变化,那和允许较大的允差情况相比,意味着电容会在较短的时间内失效。
ESR 值由三部分引起的:随着温升而增加的电极引接片和铝箔之间的电阻,随着温升而迅速降低的电解液的电阻(氧化层),和随着频率增加而降低的电介质的电阻。
最后一部分在频率高于 1.5 KHz. 时可忽略。
电容寿命结束是基于几个给定参数值的变化量而定义的。
这些参数是容值(C )、等效串联电阻(ESR )、损耗角(DF )和漏电流(I L ) 。
各生产商根据其电容的性能,对电容的寿命有不同的定义。
电容寿命结束的定义基于以下参数值:D C = 15% for V r £ 160 VDC (V r = 额定电压).10% for V r > 160 VDC.ESR ³ 2 倍初始值DF (tan d ) ³ 1.3 倍额定值I L ³额定值减少成本尽管对电容的具体要求有所不同,但通常处理高纹波电流时都会要求电容具有较大的容值。
在某种程度上来说这是必要的,但因各生产厂商生产技术各不相同,为满足某一纹波电流和工作寿命所需的电容容值也不相同。
因此,根据不同的电容设计,某供应商的电容容值有时高于另一家的。
电容的设计、材料和制作工序都决定了电容的寿命和稳定性。
好的设计可使较小的电容容值就能满足应用中的纹波电流的要求,尤其是在一些纹波电流负载要求不高,容值要求较低的电路应用中。
也就是说,某容值的电容在电路中可能工作良好,但由于高纹波电流导致工作寿命太短。
这种情况下,必须选择―过设计‖电容去适应电流环境。
而对于设计良好的电解电容,减少了―过设计‖的需要,从而在相当程度上尽可能节约了成本。
三、电容失效的防范电解电容的一般失效模式如下图:电容器在过压状态下容易被击穿,而实际应用中的瞬时高电压是经常出现的。
U R 额定电压U S 浪涌电压,1000 个周期,无载330 秒,带载30 秒(Us 一般为110%~115% 倍U R)U T 瞬态高电压LC 滤波器中,开关动作时,也可能产生瞬时过电压。
该瞬时过电压会对电容产生―过冲击‖采用半导体元件的软开关技术可有效地防止瞬时过电压。
整流器前的滤波器可滤除一些高速瞬时高压,但不可能全部。
如果铝电解电容器的正负极连接错误,只需很短的时间就会造成电容器的损坏。