当前位置:文档之家› 高中物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)及解析

高中物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)及解析

【解析】
【分析】
(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;
(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;
(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.
【解析】
【详解】
(1)带正电的粒子在电场中做类平抛运动,有:L=v0t
解得E=16N/C
(2)设带正电的粒子从P点射出电场时与虚线的夹角为θ,则:
可得θ=450粒子射入磁场时的速度大小为v= v0
粒子在磁场中做匀速圆周运动:
由几何关系可知
解得B=1.6×10-2T
(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为 ,带负电的粒子转过的圆心角为 ;两带电粒子在AC两点进入电场的时间差就是两粒子在磁场中的时间差;
【解析】
【详解】
(1)由几何关系知,速率为 的粒子在第Ⅰ象限内运动的半径为 ①
由牛顿运动定律得 ②
得 ③
(2)由(1)中关系式可得速率为 、 的粒子在磁场中的半径分别为 、 .
设粒子与 轴的交点到 的距离为 ,将 和 分别代入下式

得这两种粒子在 轴上的交点到 的距离分别为 、 ⑤
故速率为 的粒子被吸收,速率为 的粒子不能被吸收.⑥
【解析】
试题分析:(1)粒子在电场中做类平抛运动,从O点射出使速度
代入数据得U=100V
(2)
粒子在磁场中经过半周从OB中穿出,粒子在磁场中运动时间
射出点在AB间离O点
(3)粒子运动周期 ,粒子在t=0、 ….时刻射入时,粒子最可能从AB间射出
如图,由几何关系可得临界时
要不从AB边界射出,应满足

考点:本题考查带电粒子在磁场中的运动
(1)电压U0的大小;
(2)若沿x轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度;
(3)若在第四象限加一个与x轴相切的圆形匀强磁场,半径为r=0.03m,切点A的坐标为(0.12m,0),磁场的磁感应强度大小B= ,方向垂直于坐标平面向里.求粒子出磁场后与x轴交点坐标的范围.
【答案】(1) (2) (3)
(1)要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?
(2)若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?
(3)从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.
【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)
圆周运动的周期T=
故粒子从Q孔进入磁场到第一次到O点所用的时间为
考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).
6.如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为 =1.0×1010C/kg)由静止进人电压U= 800V的加速电场,经加速后沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。
3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN上方区域的平行长金属板AB间电压大小可调,平行长金属板AB间距为d,匀强磁场的磁感应强度大小为B,方向垂直纸面向里.MN下方区域I、II为两相邻的方向相反的匀强磁场区,宽度均为3d,磁感应强度均为B,ef是两磁场区的分界线,PQ是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)求第I象限内磁场的磁感应强度B1;
(2)计算说明速率为5v、9v的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B2的大小和方向.
【答案】(1) (2)故速率为 的粒子被吸收,速率为 的粒子不能被吸收(3) (或 ),垂直坐标平面向外
(1)两金属极板间的电压U是多大?
(2)若To=0.5s,求t=0s时刻射人磁场的带电粒子在磁场中运动的时间t和离开磁场的位置.
(3)要使所有带电粒子通过O点后的运动过程中不再从AB两点间越过,求出磁场的变化周期Bo,To应满足的条件.
【答案】(1)100V (2)t= ,射出点在AB间离O点 m (3)
设圆周运动的速度偏向角为 ,则联立以上方程可以得到: ,故
由几何关系可知纵坐标为 ,则
解得: ;
(2)粒子在电场中做类平抛运动, , , ,
射出电场时的偏向角为 ,
磁场右边界到荧光屏的距离为 ,由几何关系 ,解得: 。
7.在平面直角坐标系x0y中,第I象限内存在垂直于坐标平面向里的匀强磁场,在A(L,0)点有一粒子源,沿y轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m,电荷量为q.在B(0,L)、C(0,3L)、D(0,5L)放一个粒子接收器,B点的接收器只能吸收来自y轴右侧到达该点的粒子,C、D两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B点并被吸收,不计粒子重力.
得r=
易知r3=4r2
且满足(r2+r3)2=(R2-r2)2+r32
解得r2= r3= m
又由动能定理有qU= mv2
代入数据解得U=3×107V.
(3)带电粒子从P到Q的运动时间为t1,则t1满足 v t1=d
得t1=10-9s
令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)
由几何关系,恰好经N板右边缘的粒子经x轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x轴射出点的横坐标:
.
由几何关系,过A点的粒子经x轴后进入磁场由B点沿x轴正向运动.
综上所述,粒子经过磁场后第二次打在x轴上的范围为:
5.如图所示,同轴圆形区域内、外半径分别为R1=1m、R2= m,半径为R1的圆内分布着B1=2.0T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d= cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:
(3)若速度为 的粒子能到达 点的接收器,则所加磁场应垂直坐标平面向外⑦
设离子在所加磁场中的运动半径为 ,由几何关系有

又 ⑨
解得 (或 )⑩
若粒子到达 点的接收器,所加磁场应垂直于坐标平面向里
同理:
解得 (或 )
8.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。a、b两带正电粒子从O点同时分别沿y轴正向、负向运动,已知粒子a质量为m、电量为q、速度大小为v,粒子b质量为2m、电量为2q、速度大小为v/2,粒子b恰好不穿出1区域,粒子a不穿出大圆区域,不计粒子重力,不计粒子间相互作用力。求:
若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间 ;
带正电的粒子在磁场中运动的时间为: ;
带负电的粒子在磁场中运动的时间为:
带电粒子在AC两点射入电场的时间差为
2.如图所示,在两块水平金属极板间加有电压U构成偏转电场,一束比荷为 的带正电的粒子流(重力不计),以速度vo=104m/s沿水平方向从金属极板正中间射入两板.粒子经电场偏转后进入一具有理想边界的半圆形变化磁场区域,O为圆心,区域直径AB长度为L=1m, AB与水平方向成45°角.区域内有按如图所示规律作周期性变化的磁场,已知B0=0. 5T,磁场方向以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O点与水平方向成45°斜向下射入磁场.求:
【答案】(1) (2) (3)3B2d2b<U<
【解析】
【详解】
(1)正电子匀速直线通过平行金属极板AB,需满足
Bev=
因为正电子的比荷是b,有
E=
联立解得:
(2)当正电子越过分界线ef时恰好与分界线ef相切,正电子在匀强磁场区域I、II运动的时间最长。
=2t
T=
联立解得:
(3)临界态1:正电子恰好越过分界线ef,需满足
高中物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)及解析
一、带电粒子在磁场中的运动专项训练
1.如图所示,两条竖直长虚线所夹的区域被线段MN分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ垂直MN放置,挡板的中点置于N点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M的上方取点A,一比荷 =5×105C/kg的带正电粒子,从A点以v0=2×103m/s的速度沿平行MN方向射入电场,该粒子恰好从P点离开电场,经过磁场的作用后恰好从Q点回到电场。已知MN、PQ的长度均为L=0.5m,不考虑重力对带电粒子的影响,不考虑相对论效应。
相关主题