当前位置:文档之家› 复合地基

复合地基


复合地基示意图
粉喷桩复合地基
(2)复合地基分类
复合地基
1)根据地基中增强体的方向分类
水平向增强体复合地基:土工聚合物、金属材料格栅等 形成的复合地基 。 竖向增强体复合地基:桩体复合地基

均质人工地基
双层地基
水平向增强 体复合地基
竖直向增强 体复合地基
图2-2 人工地基分类
2)复合地基中桩的分类
4)挤密作用
在施工过程中由于振动、挤压、排土等原因,可使桩间土起到一定 的密实作用。
5)加筋作用
各种复合地基除了可提高地基的承载力和整体刚度外,还可提高 土体的抗剪强度,增加土坡的抗滑能力。目前在国内的深层搅拌 桩、粉体喷搅桩和砂桩等以被广泛地用于高速公路等路基或路堤 。 的加固,这都利用了复合地基中桩体的加筋作用。
σp
σs
图2-8复合地基计算简图
3.复合模量
复合地基
复合地基加固区由桩体和桩间土两部分组成,呈 非均质。在复合地基计算中,为了简化计算,将加 固区视作一均质的复合土体,则复合地基的复合模 量Esp: Esp=m Ep+(1-m) Es (2-4a) (2-4b)

Esp=〔1+m(n-1)Es
式中:Esp—复合地基压缩模量,MPa ; m—复合地基面积置换率; n—桩土应力比; Ep—桩体压缩模量,MPa; Es—土体压缩模量, MPa 。
K2—反映复合地基中桩间土实际极限承载力的修正系数 ,可能大于1.0,也可能小于1;
λ1— 反映桩的极限承载力发挥程度的系数,若桩体先达到极限强度引起复合 地基破坏,则λ1 =1.0,否则,桩间土先达极限强度则λ1 ﹤1.0; λ2— 反映桩间土的极限承载力发挥程度的系数,在0.4-1.0之间 ;
m—复合地基置换率.
复合地基
图2-4 地基——复合地基区别
复合地基与桩基比较
性桩和刚性桩;桩基中的桩均为刚性桩; ·
复合地基
① 桩身材料与强度。复合地基中桩有散体材料桩、柔性桩、半刚
② 桩与上部结构的连接方式。复合地基中桩体与基础不是直接相
连的,它们之间通过垫层(碎石或砂石垫层)来过渡;而桩基中 桩体与基础直接相连,两者形成一个整体。如图2-5所示。 ③ 受力特性不同。复合地基的主要受力层在加固体内,由基体和 增强体两部分共同承担上部荷载、协同工作;而桩基的主要受力 层是在桩尖以下一定范围内,主要由桩体承担荷载作用。 ④ 群桩效应问题。由于复合地基的理论的最基本假定为桩与桩周 土的协调变形。为此,从理论而言,复合地基中也不存在类似桩 基中的群桩效应。 垫层 承台
复合地基发生何种破坏模式,与复合地基的桩型, 桩身强度,土层条件,荷载形式及复合地基上基础 结构的形式有关。
(1)对于不同的桩型,有不同的破坏模式。 (2)对于同一桩型,当其桩身强度不同时,也会有 不同的破坏模式。 (3)对于同一桩型,当土层条件不同时,也将发生 不同的破坏模式。
复合地基破坏模式小结
料桩复合地基往往发生鼓胀破坏,在一定的条件下,柔
性桩复合地基也可能产生此类型式的破坏。
Fk
鼓胀破坏(图2-6b)
鼓胀破坏 非均质粘性土中碎石桩破坏机理
复合地基
鼓胀破坏
破坏模式
复合地基
(c)整体剪切破坏(图2-6c)
在荷载作用下,复
合地基将出现图2-6c所示的塑性区,在滑动面上桩
和土体均发生剪切破坏。散体材料桩复合地基较易 发生整体剪切破坏,柔性桩复合地基在一定条件下
复合地基
(2)复合地基桩体破坏模式
复合地基中,桩体破坏模式可分为以下4种:刺
入破坏、鼓胀破坏、整体剪切破坏和滑动破坏
图2-6 复合地基中桩体可能破坏模式 (a) 刺入破坏;(b) 鼓胀破坏;(c) 整体剪切破坏;(d) 滑动破坏
复合地基
破坏模式
a.刺入破坏(图2-6a)
桩体刚度较大,地基土强度较
m= Ap/A 或
式中:
正方形布桩等效圆直径: 矩形布桩等效圆直径:
L
m= d2/ de2 (2-1) de=1.13L
d e 1.13 L1 L2
de
L、L1、L2分别为桩间距、纵向间距 和横向间距。
图2-7a正方形布桩
面积置换率 m
复合地基
等边三角形布桩等效圆直径: 3 2 Ae L de=1.05L 2 L为桩间距。
复合地基
桩体极限承载力ppf计算
(1)对刚性桩和柔性桩极限承载力计算
①根据桩身材料强度计算
p pf q
p Q uk pf u p
桩体极限抗压强度 (2-6)
②根据桩侧摩阻力和桩端阻力计算
q
ski
Li Ap q pk
(2-7)
式中 qski一桩周土极限侧阻力标准值; up一桩身周边长度; Ap一桩身截面面积; qpk一极限端阻力标准值; Li一按土层划分的各段桩长。对柔性桩,桩长大于临界桩 长时,计算桩长应取临界桩长值。
复合地基
水下的碎石桩复合地基
复合地基
复合地基静载荷试验
2.2 复合地基的作用机理与破坏模式
(1)复合地基作用机理 1)桩体作用
复合地基
复合地基承载力和整体刚度高于原地基,沉降量有所减少。
2) 垫层作用
可起到类似垫层的换土、均匀地基应力和增大应力扩散角等作用。
3)加速固结作用
除碎石桩、砂桩具有良好的透水特性,可加速地基的固结外,水 泥土类和混凝土类桩在某种程度上也可加速地基固结。
复合地基
3)复合地基常用的形式
水平向增强 复合地基
竖直向增强 复合地基
斜向增强 复合地基
长短桩复 合地基
图2-3 复合地基常用的形式
3. 复合地基特点
复合地基与天然地基比较:
复合地基
复合地基加固区是由增强体和基体两部分组成,是非 均质和各向异性的,该特点使复合地基区别于均质地 基。
垫 层
天然地基
第二章 复合地基理论与设计
复合地基
主要内容
2.1 复合地基概念与分类
2.2 复合地基的作用机理与破坏模式
2.3 复合地基设计参数
2.4 复合地基承载力计算
2.5 复合地基沉降计算 2.6 复合地基应用实例
2.1复合地基概念与分类
1. 发展概况
复合地基
复合地基的概念已成为很多地基处理方法的理论分析及公式建
复合地基
2.3复合地基设计参数
面积置换率 m 桩土应力比 n
复合模量 Esp
1. 面积置换率m
复合地基
研究复合地基时,是在众多根桩所加固的地基中,选取一根桩及其 影响的桩周土所组成的单元体作用为研究对象。若桩体的横截面积为 Ap,桩身平均直径为d,该桩体对应的加固面积为A,该桩体所对应的加 固面积的等效圆直径为de,则面积置换率m:
复合地基
在竖向增强体复合地基中,桩的作用是主要的,而 地基处理中桩的类型较多,性能变化较大。为此,可根 据增强体(桩体)所采用的材料以及成桩后桩体的强度 (或刚度)来进行分类。
2)复合地基中桩的分类
复合地基
由柔性桩和桩间土所组成的复合地基可称为柔性桩 复合地基,依次有: 散体材料桩复合地基—如碎石桩、砂桩、矿渣桩等; 柔性桩复合地基—如石灰桩、土(或灰土)桩; 半刚性桩—如水泥土搅拌桩、旋喷桩等; 刚性桩复合地基——混凝土类桩(如CFG桩等)。 桩中水泥掺入量的大小将直接影响桩体的强度。当 掺入量较小时,桩体的特性类似柔性桩;而当掺入量较 大时,又类似于刚性桩。
桩间土极限承载力psf计算
(1) 桩间土极限承载力影响因素
复合地基
以上因素大多是使桩间土极限承载力高于天然地基承载力 。
(2)桩间土极限承载力psf计算方法
复合地基
通常桩间土极限承载力 psf 取相应的天然地基极限 承载力值。除载荷试验或查规范外,常用斯开普顿
2.4复合地基承载力计算
1.复合地基极限承载力pcf计算式
桩、土承载力进行叠加:
复合地基


(2-5)
pcf K11mppf K 2 2 (1 m) psf
式中: ppf——桩体极限承载力(kPa); psf——天然地基极限承载力(kPa);
K1—反映复合地基中桩体实际极限承载力的修正系数 ,一般大于1;
Ep Es
2)桩土模量比
3)桩土面积置换率,m 4)原地基土强度
5)桩长
6)时间 7)垫层
复合地基应力特性
(4)复合地基动力特性
碎石桩或砂桩处理液化地基的效果在于
1)提高了地基土(桩间土)的密实度; 2)改善了地基的排水条件;
3)地基土受到一定时间的预振动;
4)由于桩对桩间土的约束作用,使得地基的刚度增大 其他复合地基同样具有上述特征
也可能发生此类破坏。
塑性区
整体剪切破坏(图2-6c)
破坏模式
复合地基
(d)滑动破坏(图2-6d)
如图2-6d所示,在荷载作
用下复合地基沿某一滑动面产生滑动破坏。在滑动面上, 桩体和桩间土均发生剪切破坏。各种复合地基都可能发 生这类型式的破坏。
滑动面
滑动破坏(图2-6d)
复合地基破坏模式小结
复合地基
2.3 复合地基应力特性 (1)基地反力;
(2)附加应力分布;
(3)桩土应力比,n;
(4)复合地基动力特性;
σp
σs
复合地基应力特性
(1)基底反力


桩顶范围内应力集中明显;
桩间土反力仍保持类似天然地基时的马鞍形分布
复合地基应力特性
(2)附加应力分布


国内外目前尚无复合地基附件应力计算公式;
复合地基中应力分布不
均匀;但总体上讲,仍
相关主题