当前位置:文档之家› 高中物理带电粒子在复合场中的运动的基本方法技巧及练习题及练习题

高中物理带电粒子在复合场中的运动的基本方法技巧及练习题及练习题

一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量q+、重力不计的带电粒子,以初速度1v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W(2)粒子第n次经过电场时电场强度的大小nE(3)粒子第n次经过电场所用的时间nt(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mvW =(2)21(21)2nn mvEqd+=(3)12(21)ndtn v=+(4)如图;【解析】(1)根据mvrqB=,因为212r r=,所以212v v=,所以221211122W mv mv=-,(2)=,,所以.(3),,所以.(4)3.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨4.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=(2)1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at = 竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )7)f F F F αα++=(解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.5.如图所示,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里磁感应强度为B 的匀强磁场,线段CO=OD=L ,CD 边在x 轴上,∠ADC=30°。

电子束沿y 轴方向以相同的速度v 0从CD 边上的各点射入磁场,已知这些电子在磁场中做圆周运动的半径均为3L,在第四象限正方形ODQP 内存在沿x 轴正方向、大小为E=Bv 0的匀强电场,在y=-L 处垂直于y 轴放置一足够大的平面荧光屏,屏与y 轴交点为P 。

忽略电子间的相互作用,不计电子的重力。

(1)电子的比荷;(2)从x 轴最右端射入电场中的电子打到荧光屏上的点与P 点间的距离: (3)射入电场中的电子打到荧光屏上的点距P 的最远距离。

【来源】【市级联考】河北省唐山市2019届高三下学期第一次模拟考试理科综合物理试题 【答案】(1) 03v e m BL = (2) 23L (3) 34L 【解析】 【分析】根据电子束沿速度v 0射入磁场,然后进入电场可知,本题考查带电粒子在磁场和电场中的运动,根据在磁场中做圆周运动,在电场中做类平抛运动,运用牛顿第二定律结合几何知识并且精确作图进行分析求解; 【详解】(1)由题意可知电子在磁场中的轨迹半径3Lr = 由牛顿第二定律得2Bev m rv =电子的比荷3e m BLv =; (2)若电子能进入电场中,且离O 点右侧最远,则电子在磁场中运动圆轨迹应恰好与边AD 相切,即粒子从F 点离开磁场进入电场时,离O 点最远:设电子运动轨迹的圆心为O '点。

则23L OF x ==从F 点射出的电子,做类平抛运动,有2232L Ee x mt ==,0y t v = 代入得23Ly =电子射出电场时与水平方向的夹角为θ有122y tan x θ== 所以,从x 轴最右端射入电场中的电子打到荧光屏上的点为G ,则它与P 点的距离 ()2tan 3L y L GP θ-==; (3)设打到屏上离P 点最远的电子是从(x,0)点射入电场,则射出电场时 00223xm xLy t Ee v v ===设该电子打到荧光屏上的点与P 点的距离为X ,由平抛运动特点得2X L yy x -=所以2332222838xL xLL X x x y L x ⎡⎤⎫⎢⎥⎛⎫=-==-+⎪ ⎪⎢⎥⎪⎝⎭⎭⎢⎥⎣⎦- 所以当38x L =,有34m L X =。

【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系,粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用。

6.如图所示,真空中某竖直平面内有一长为2l 、宽为l 的矩形区域ABCD ,区域ABCD 内加有水平向左的匀强电场和垂直于该竖直面的匀强磁场。

一质量为m 、电荷量为+q 的带电微粒,从A 点正上方的O 点水平抛出,正好从AD 边的中点P 进入电磁场区域,并沿直线运动,从该区域边界上的某点Q 离开后经过空中的R 点(Q 、R 图中未画出)。

已知微粒从Q 点运动到R 点的过程中水平和竖直分位移大小相等,O 点与A 点的高度差38h l = ,重力加速度为g ,求:(1)微粒从O 点抛出时初速度v 0的大小; (2)电场强度E 和磁感应强度B 的大小; (3)微粒从O 点运动到R 点的时间t 。

【来源】四川省攀枝花市2019届高三第三次统一考试理综物理试题【答案】(1)0233v gl = ;(2)3mg E 4q =,32m g B q l=;(3) 433l t g = 【解析】 【详解】(1)从O 到P ,带电微粒做平抛运动:201h gt 2=00l=v t所以02v 3gl 3=(2)在P 点:y 01v =gt 3gl 2=22p 0y 5v =v v 3gl 6+=设P 点速度与竖直方向的夹角为θ,则0y v 4tan θv 3== 带电微粒进入电磁区域后做直线运动,受力如图,可知其所受合力为零,可知:mg mgtan θF Eq==p mg mgsin θf qv B== 3mg E 4q=m 3gB 2q l=(3)设微粒从P 到Q 所用时间为t 1,10PD 13lt v 2g==设微粒从Q 到R 所用时间为t 2,因水平和竖直分位移相等,得:202x v t =22y 221y v t gt 2=+由题意得: 22x y =微粒从0点运动到R 点的时间t 为:012t t t t =++所以:43lt 3g=7.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。

相关主题