当前位置:文档之家› 2018电磁场电磁波实验指导书

2018电磁场电磁波实验指导书

实验一电磁感应定律的验证一、实验目的1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容2、了解半波天线感应器的原理及设计方法3、天线长短与电磁波波长的接收匹配关系二、预习要求1、麦克斯韦电磁理论的内容2、什么是电偶极子?3、了解线天线基本结构及其特性三、实验仪器HD-CB-IV电磁场电磁波数字智能实训平台:1套电磁波传输电缆:1套平板极化天线:1副半波振子天线:1副感应灯泡:1个四、实验原理麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。

麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。

麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。

下面我们通过制作感应天线体,来验证电磁场的存在。

如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。

电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为λ /4 ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式:│ E │ =[60 Im cos( π cos θ /2)]/R 。

sin θ=[60 Im/R 。

] │ f( θ ) │ 式中,f( θ ) 为方向函数。

对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。

由上式可画出半波振子的方向图如下:半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。

在 E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过0.625 λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。

五、实验步骤(一)测量电磁波发射频率1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。

2、在液晶界面上同时显示出发射功率及频率。

3、已知电磁波发射源的频率F,求得波长:λ=F V光,比如,电磁波发射源频率为900MHz,则:λ= F V光=3*108/900*106=0.33m.半波天线长L=0.165 m则两端子分别均为0.165/2=8.25cm4,电磁波波长也可由液晶界面波长计算公式直接计算得出。

(二)制作半波振子天线1、剪下一段铜丝,按计算得到尺寸剪下2段铜丝。

2、将铜丝末端漆刮掉,保持良好导电。

3、将天线安装到转盘上,这时就完成了半波天线的制作。

4、其他天线方法同上。

(三)验证麦克斯韦电磁理论,电磁场的存在1、按下发射开关,将“输出口2”与极化天线通过SMA电缆相连,电磁波经传输电缆,经天线发射后在空中传输2、灯泡被点亮,验证了电磁场的存在。

六、注意事项1、漆包线铜丝需将末端的漆刮掉,保持导电性良好。

2、铜丝避免弯折。

七、报告要求1、按照标准实验报告的格式和内容完成实验报告;2、完成数据运算及整理;3、更换天线种类进行制作;实验二电场中位移电流的测试及计算一、实验目的1、认识时变电磁场,理解电磁感应的原理和作用2、理解电磁波辐射原理3、了解位移电流的概念二、预习要求1、什么是法拉第电磁感应定律?2、半波振子天线的原理。

三、实验仪器HD-CB-IV电磁场电磁波数字智能实训平台:1套检波器:1只微安表头:1只电磁波传输电缆:1套平板极化天线:1副半波振子天线:1副四、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。

电场和磁场构成了统一的电磁场的两个不可分割的部分。

能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。

如果将另一副天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。

如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。

接收天线和白炽灯构成一个完整的电磁感应装置。

当越靠近发射天线,灯泡被点的越亮。

越远离天线,灯泡越暗。

五、实验步骤(一)装置白炽灯泡1、用SMA电缆连接“输出口2”和极化天线(可先选择A端口垂直极化),将电磁波信号输送到极化天线上发射出去。

2、按下机器供电开关,机器工作正常,按下功率“发射开关”,绿色发射指示灯亮,说明发射正常。

3、半波天线的长度计算方法(也可由液晶界面直接显示):已知电磁波发射源的频率F,求得波长:λ= F V光,比如,电磁波发射源频率为900MHz,则:λ=F V光=3*108/900*106=0.33m.半波天线长L=0.165m则两端子分别均为0.165/2=8.25cm下面开始制作天线。

注意:(天线端口与支撑金属片固定端的铜丝上的绝缘漆要刮)4、用金属丝(铜丝)制作典型的半波天线,安装于感应灯板两端,竖直固定到测试支架上,将滑块移动置极化天线端(最左端)归零,此时液晶显示读数0.00。

调节测试支架滑块到离发射天线40cm左右,按下功率信号发生器上发射按钮,白炽灯被点亮。

5、开始移动测试支架滑块(向靠近极化天线方向移动),直到小灯刚刚发光时,直接在显示器上读取滑块与发射天线的距离并记录。

6、改变天线振子的长度,重复上面过程,记录数据,总结得出天线长度与灯泡亮暗的关系。

7、设计制作其它天线形式制作感应器,重复上面过程,记录数据。

(二)装置检波二极管1、将感应板换成检波装置,(灯泡变成了检波二极管)。

置于旋转支架上。

2、用金属丝(铜丝)制作典型的半波天线,安装于检波板两端,竖直固定到测试支架上,将滑块移动置极化天线端(最左端)归零,此时液晶显示读数0.00。

调节测试支架滑块到离发射天线40cm左右,通过SMA连接线将检波电流送至“检波电流输入”端口,同时将主机后开关切换至“电流输入”。

按下功率信号发生器上发射按钮,指针开始偏转。

记录数值。

3、慢慢向极化天线方向移动,记录下距离数值及电流大小,记录数值。

五、注意事项1、按下机器供电开关,机器工作正常,按下功率发射按钮,发射指示灯亮,说明发射正常。

2、滑动感应器及反射板应缓慢,切忌过快影响实验效果和读数。

3、测试感应器时,不能将感应灯靠近发射天线的距离太近,否则会烧毁感应灯。

(置于15cm 以外,或视感应灯亮度而定)4、尽量减少按下发射按钮的时间,以免影响其它小组的测试准确性。

5、测试时尽量避免人员走动,以免人体反射影响测试结果。

六、报告要求1、按照标准实验报告的格式和内容完成实验报告;2、完成数据运算及整理;3、对实验中的现象分析讨论。

实验三电磁波的偏振及极化测试一、实验目的1、电磁波的偏振现象的产生2、完全偏振波与合成偏振波的定义3、研究线性极化波的产生及其特点;4、研究制作的电磁波感应器的极化特性,进行极化特性实验,与理论结果进行对比、讨论;5、通过实验加深对电磁波极化特性的理解和认识。

二、预习要求1、什么是电磁波的偏振?它具有什么特点?2、了解各种常用天线的极化特性;3、天线特性与发射( 接收) 电磁波极化特性之间的有什么关系?三、实验仪器HD-CB-IV电磁场电磁波数字智能实训平台:1套水平极化天线:1副垂直极化天线:1副电磁波传输电缆:1根微安表:1只灯泡:1只四、实验原理首先我们说的偏振应该称为完全偏振波,即波中只有一个方向的振动(线偏,电磁波里叫线极化),也有两个方向合成的(圆偏振,椭圆偏振)。

自然光里的电磁波可以理解为是在各个方向上线偏振光的均匀叠加。

如果这种变化具有确定的规律,就称电磁波为极化电磁波(简称极化波)。

如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面内取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。

电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名。

天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量 E 的端点在空间描绘出的轨迹来表示。

由其轨迹方式可得电磁波的极化方式有三种:线极化、圆极化、椭圆极化。

极化波都可看成由两个同频率的直线极化波在空间合成, 如图所示,两线极化波沿正Z 方向传播,一个的极化取向在X 方向,另一个的极化取向在Y 方向。

若X 在水平方向,Y 在垂直方向,这两个波就分别为水平极化波和垂直极化波。

若:水平极化波E x=E xm sin(wt-kz) 垂直极化波E y=E ym sin(wt-kz+ δ )其中E xm、E ym 分别是水平极化波和垂直极化波的振幅,δ是E y超前E x 的相角(水平极化波取为参考相面)。

取Z=0 的平面分析,有E x=E xm sin(wt)E y=E ym sin(wt+ δ )综合得aEx2-bExEy+cEy2=1式中 a 、b 、c 为水平极化波和垂直极化波的振幅E xm、E ym和相角δ有关的常数。

此式是个一般化椭圆方程,它表明由E x、E y合成的电场矢量终端画出的轨迹是一个椭圆。

所以:●当两个线极化波同相或反相时,其合成波是一个线极化波;●当两个线极化波相位差为л /2 时,其合成波是一个椭圆极化波;●当两个线极化波振幅相等,相位相差л /2 时,其合成波是一个圆极化波。

实验一所设计的半波振子接收(发射)的波为线极化波,而最常用的接收(发射)圆极化波或椭圆极化波的天线即为螺旋天线。

相关主题