当前位置:文档之家› 机械制造技术基础实验指导书

机械制造技术基础实验指导书

安徽三联学院《机械制造技术基础》实验指导书交通工程学院实验中心实验1 、车刀几何角度测量一、实验目的与要求1了解车刀量角台的构造与工作原理。

2掌握车刀几何角度测量的基本方法。

3加深对车刀各几何角度、各参考平面及其相互关系的理解。

二、实验实施的条件仪器:回转工作台式量角台= 00)车刀: 1直头外圆车刀(λs2直头外圆车刀(λ< 00)s三、实验具体步骤图1-1所示,回转工作台式量角台主要由底盘1、平台3、立柱7、测量片5、扇形盘6、10等组成。

底盘1为圆盘形,在零度线左右方向各有1000角度,用于测量车刀的主偏角和副偏角,通过底盘指针2读出角度值;平台3可绕底盘中心在零刻线左右1000范围内转动;图1-1 量角台的构造定位块4可在平台上平行滑动,作为车刀的基准;测量片5,如图1-2所示,有主平面(大平面)、底平面、侧平面三个成正交的平面组成,在测量过程中,根据不同的情况可分别用以代表剖面、基面、切削平面等。

大扇形刻度盘6上有正副450的刻度,用于测量前角、后角、刃倾角,通过测量片5的指针指出角度值;立柱7上制有螺纹,旋转升降螺母8就可以调整测量片相对车刀的位置。

1利用车刀量角台分别测量λs = 00 、λs < 00的直头外圆车刀的几何角度:要求学生测量κr、κr'、λs、γo、αo、αo '等图1-2 测量片共6个基本角度。

2记录测得的数据,并计算出刀尖角ε和楔角β。

1、实验方法1根据车刀辅助平面及几何参数的定义,首先确定辅助平面的位置,在按着几何角度的定义测出几何角度。

2通过测量片的测量面与车刀刀刃、刀面的贴合(重合)使指针指出所测的各几何角度。

2、实验步骤1首先进行测量前的调整:调整量角台使平台、大扇形刻度盘和小扇形刻度盘指针全部指零,使定位块侧面与测量片的大平面垂直,这样就可以认为:(1)主平面垂直于平台平面,且垂直于平台对称线。

(2)底平面平行于平台平面。

(3)侧平面垂直于平台平面,且平行于平面对称线。

2测量前的准备:把车刀侧面紧靠在定位块的侧面上,使车刀能和定位块一起在平台平面上平行移动,并且可使车刀在定位块的侧面上滑动,这样就形成了一个平面坐标,可以使车刀置于一个比较理想的位置。

3测量车刀的主(副)偏角(1)根据定义:主(副)刀刃在基面的与走刀方向夹角。

(2)确定走刀方向:由于规定走刀方向与刀具轴线垂直,在量角台上即垂直于零度线,故可以把主平面上平行于平台平面的直线作为走刀方向,其与主(副)刀刃在基面的投影有一夹角,即为主(副)偏角。

(3)测量方法:顺(逆)时针旋转平台,使主刀刃与主平面贴合。

如图1-3所示,即主(副)刀刃在基面的投影与走刀方向重合,平台在底盘上所旋转的角度,即底盘指针在底盘刻度盘上所指的刻度值为主(副)偏角κr(κr')的角度值。

4测量车刀刃倾角(λs)(1)根据定义:主刀刃和基面的夹角。

(2)确定主切削平面:主切削平面是过主刀刃与主加工表面相切的平面,在测量车刀的主偏角时,主刀刃与主平面重合,就使主平面可以近似地看作主切削平面(只有当λs =0时,与主加工表面相切的平面才包含主刀刃),当测量片指针指零时底平面可作为基面。

这样就形成了在主切削平面内,基面与主刀刃的夹角,即刃倾角。

(3)测量方法:旋转测量片,即旋转底平面(基面)使其与主刀刃重合。

如图1-4所示,测量片指针所指刻度值为刃倾角。

5测量车刀主剖面内的前角γo和后角αo(1)根据定义:主前角是指在主剖面内,前刀面与基面的夹角。

主后角是指在主剖面内后刀面与主切削平面的夹角。

(2)确定主剖面:主剖面是过主刀刃一点,垂直于主刀刃在基面的投影。

(3)在测量主偏角时,主刀刃在基面的投影与主平面重合(平行),如果使主刀刃在基面的投影相对于主平面旋转900,则主刀刃在基面的投影与主平面垂直,即可把主平面看作主剖面。

当测量片指针指零时,底平面作为基面,侧平面作为图1-3 测量车刀的主偏角图 1-4 测量车刀刃倾角主切削平面,这样就形成了在主剖面内,基面与前刀面的夹角,即前角(γo);主切削平面与后刀面的夹角,即后角(αo)。

(4)测量方法:使底平面旋转与前刀面重合。

如图1-5所示,测量片指针所指刻度值为前角;使侧平面(即主切削平面)旋转与后刀面重合。

如图1-6所示,测量片指针所指刻度值为后角。

6副后角的测量与主后角的测量方法相近,所不同的是须把主平面作为副剖面。

图1-5 测量车刀前角图1-6 测量车刀后角四、实验技能测试将测得的角度值记录并计算出楔角βo 和刀尖角εr,以及其他角度的计算值,并进行比较、分析其误差原因,写在实验报告中。

表1-1 车刀几何角度测量结果记录实验2、切削变形实验一、实验目的与要求1观察切削变形的过程,以及所出现的现象。

2掌握测量切削变形和计算变形系数的基本方法。

3研究切削速度、刀具前角和走刀量等因素对切削变形的影响规律。

二、实验实施的条件1设备:CA6140普通车床2工具:游标卡尺、钢板尺、细铜丝等。

3刀具:硬质合金车刀若干把。

4试件:轴向带断屑槽的棒料。

三、实验具体步骤在金属切削过程中,由于产生塑性变形,使切屑的外形尺寸发生变化,即与切削层尺寸比较,切屑的长度偏短,厚度增加,这种现象称为切屑收缩,如图2-1所示。

一般情况下,切屑收缩的大小能反映切削变形的程度,衡量切屑收缩的大小可用变形系数表示。

即ξ= Lc / Lch式中ξ──变形系数;Lc ──切削长度(mm);Lc=πD/(n-b);对于本实验:槽数n=3;槽宽b=2.5 ;Lch──切屑长度(mm),把切屑收集起来,学生自己测量其长度。

计算变形系数的方法用测量切削长度法。

在车床上将试件装在三爪卡盘与尾架顶尖之间,试件轴向开槽并镶嵌钢板,以达到断屑和保护刀尖的目的,如图2-2所示。

把实验得到的切屑,冷却后,选出标准切屑,用铜丝沿切屑外部缠绕后拉直,然后用钢板尺测出其长度L,为提高实验精度,可测3~5段切屑的长度求出平均值LC。

变形系数ξ= Lc / Lch=(πD/n - b)/ LC1切削速度υ对切削变形的影响在车床上固定试件,装夹好刀具。

试件材料:20#钢,试件直径由现场定。

刀具材料:YT15硬质合金车刀图2-1 切屑收缩图 2-2 车削切屑收缩刀具参数:κr = 450;κr'= 80;λs = 00;γo = 100;αo = 70;r =0.1 mm。

切削用量:ƒ= 0.28 mm/r , a p = 2 mm。

改变切削速度;速度取值很关键,必须在实验前进行计算,从低速到高速,可先取υ=5;10;20;25;30;40;60;80;110 m/min;n=;;;;;;;;r/min;然后根据试棒直径计算出对应的机床转速。

用每一种转速切削一段试棒,停车收集切屑并观察切削颜色(注意安全,防止烫伤)。

测量,并将结果填入表2-1中。

2刀具前角对切削变形的影响在车床上固定试件,装夹好刀具。

试件材料:20#钢,试件直径由现场定。

刀具材料:YT15硬质合金车刀刀具参数:κr = 450;κr'= 80;λs = 00;αo = 70;r = 0.1 mm。

切削用量:ƒ= 0.28 mm/r , a p = 2 mmυ= 60 m/min 。

改变车刀前角:γo = 00;150;300。

用不同前角的车刀分别切削一段试棒,停车收集切屑并观察切削颜色(注意安全,防止烫伤)。

测量,并将结果填入表2-2中。

3进给量ƒ对切削变形的影响在车床上固定试件,装夹好刀具。

试件材料:20#钢,试件直径由现场定。

刀具材料:YT15硬质合金车刀刀具参数:κr = 450;κr'= 80;λs = 00;γo = 100;αo = 70;r =0.1 mm。

切削用量:a= 2 mmυ= 60 m/min。

p改变进给量:ƒ= 0.2;0.36;0.51;0.66 (mm/r)。

用不同的进给量分别切削一段试棒,停车收集切屑并观察切削颜色(注意安全,防止烫伤)。

测量,并将结果填入表2-3中。

表2-1 切削速度对切削变形影响实验数据记录四、实验技能测试将切屑长度测量后取平均值,记录在表2-1、2-2、2-3中,计算变形系数。

1 详细叙述实验过程。

2有完整的实验记录。

;ξ──ƒ曲线。

3绘出ξ──υ;ξ──γo4分析切削参数(υ、γ、ƒ)对切削变形的影响规律。

o表2-2 刀具前角对切削变形影响实验数据记录表2-3 进给量对切削变形影响实验数据记录实验3、车削力的测量实验一、实验目的与要求1了解八角环形力传感器的结构和工作原理以及测力系统所使用仪器的工作过程。

、v)对切削力的影响规律。

2 了解切削参数(f、ap、κr、γ二、实验实施的条件1.车床:CA6140。

2.仪器:CLS一J动态数显应变测力仪;gB一07力传感器。

3.工具:0-15Omm游标卡尺。

4.双对数坐标纸。

5.刀具:YA6硬质合金车刀若干把。

6.试件45钢,直径现场定。

三、实验具体步骤车削力是切削过程中产生的重要物理现象之一,切削力的大小与工件材料和切削因素有关。

它直接影响工艺系统的变形,切削温度、刀具磨损及功率消耗。

因此精确地测量切削力对于选择理想的切削参数及合理的切削力是很重要的,本实验就是利用最常用的万法——电阻应变测量法测量车削加工过程中的切削力。

1.八角环形力传感器的结构如图4-1所示:八角环形力传感器分为固定部分、弹变部分和装刀部分,且三部分为一整体,弹性部分包括上下两个八角环,八角环的内外侧有若干个电阻应变片。

图4-1 八角环形力传感器的结构2. 电阻应变片及工作原理如图4-2所示:电阻应变片由基底1、敏件2和引线3组成。

敏感元件为高阻金属丝,电阻值为:R=pL/A△R/R=K △L/L=K。

K为灵敏系数。

电阻率比率可近似看作与应变成正比。

当电阻应变片贴在弹性体上时,则电阻值随弹性体应变而发生变化。

3.电桥测量电路电桥电路把电阻应变片上电阻值的微小变化转换成电压信号的变化,图4-3所示,图4-2 电阻应变片通过适当的粘贴,使电阻应变片R1、R2、R3和R4随应变的变化而分别变大利变小,且变化量分为△R1、△R2、△R3和△R4。

设变形前R1、R2、R3和R4组成的电桥电路平衡,即R1/R3=R2/R4,u输出为零,既u1=u2。

图4-3 电桥测量基本点路当电阻变化时,u1、u2分别增加和减少,所以变形后输出电压为:u=u1-u2若使R1=R2=R3=R4=R(一般力传感器的测量电桥的电阻应变片值为120Q),且△R1≈△R2≈-△R3≈-△R4,则可以推出 U=E Kε根据虎克定律,弹性体中:F=Kˊε,∴ε=F/Kˊ∴ u=EKε=EKF/Kˊ所以电压输出信号近似与弹性体受力成正比。

实际测量时,为了提高测量精度,常将贴在不同位置的相同阻值的应变片,串并接于电桥电路中,组成复杂的桥路。

相关主题