当前位置:文档之家› 110KV变电所电气二次部分设计毕业设计

110KV变电所电气二次部分设计毕业设计

110KV变电所电气二次部分设计毕业设计目录1 绪论 (1)2 主变压器微机保护设计 (2)2.1 变压器保护的发展及现状 (2)2.2 变压器的故障类型及保护配置 (3)2.2.1 变压器故障类型及其不正常运行状态 (3)2.2.2 变压器保护配置原则 (3)2.3 变压器的保护的配置方案确定 (4)2.4 变压器主保护测控装置 (5)2.4.1 RCS-9671变压器主保护的基本配置及规格 (5)2.4.2 电流差动保护原理 (7)2.4.3 RCS-9671变压器主保护的装置原理 (7)2.4.4 RCS-9671变压器主保护软件说明 (8)2.4.5 RCS-9671变压器主保护装置端子说明 (11)2.5 变压器后备保护测控装置 (12)2.5.1 基本配置及规格 (12)2.5.2 保护测控装置原理说明 (13)2.5.3 RCS-9681后备保护测控装置软件说明 (14)2.5.4 RCS-9682后备保护测控装置软件说明 (16)2.5.5 保护测控装置端子说明 (18)2.5.6 主保护装置和后备保护装置配合分析 (18)2.5.7 变压器过负荷闭锁有载调压 (23)2.6 变压器非电量保护装置 (24)2.6.1 RCS-9661保护基本配置及规格 (24)2.6.2 RCS-9661装置工作原理 (24)2.6.3 RCS-9661装置硬件原理 (25)2.6.4 装置的运行说明 (28)2.7 主变压器保护的整定计算 (29)2.7.1 变压器主保护整定计算 (29)2.7.2 变压器后备保护整定计算 (31)3 母线微机保护设计 (34)3.1 母线保护的重要性 (34)3.2 母线保护的装设原则 (34)3.3 母线保护配置的选型和方案设计 (35)3.4 RCS-915AB型母线保护硬件配置 (35)3.5 RCS-915AB母线保护装置的原理说明 (38)3.6 RCS-915AB装置对母线运行方式的识别与断线检查 (42)3.7 装置运行说明 (44)3.8 母线保护的整定计算 (45)4 断路器、隔离开关的控制及操作回路设计 (48)4.1 断路器、隔离开关的配置原则与规 (48)4.1.1 断路器控制回路的设计原则 (48)4.1.2 隔离开关控制回路的设计原则 (48)4.2 断路器、隔离开关的控制及操作回路设计 (49)4.2.1 智能操作箱的选择 (49)4.2.2 PCS-222 智能操作箱功能及特点 (50)4.2.3 PCS-222 装置的硬件构成 (50)4.2.4 显示说明 (54)4.3 微机保护、测控与操作箱的联系 (56)5 互感器的配置与接线设计 (57)5.1 互感器的配置原则 (57)5.1.1 电流互感器的配置 (57)5.1.2 电压互感器的配置 (57)5.2 互感器的接线形式 (58)5.2.1 电流互感器的接线形式 (58)5.2.2 电压互感器的接线形式 (59)5.3 互感器与保护装置的接线 (61)6 中央信号系统设计 (66)6.1 中央信号的作用 (66)6.2 中央信号回路基本要求及设备装置的选型 (66)6.2.1 中央信号回路的基本要求 (66)6.2.2 中央设备装置的选型 (66)6.2.3 装置的主要功能 (67)6.2.3 装置报警方式 (67)6.2.4 装置接线 (67)7 微机保护组屏方案设计 (69)7.1 系统通信规约介绍 (69)7.2 变电站组屏方案设计 (71)结论 (72)参考文献 (73)致谢 (74)附录A (75)1 绪论目前变电站自动化的模式有集中式结构、分布式结构和分布分散式结构3种。

目前新建的变电站大部分采用的是分布分散式结构,典型结构分为:管理层、间隔层以及设备层。

分布分散结构具有信息共享、稳定性强以及扩展性好的优点,是变电站综合自动化的发展方向。

随着IEC61850系列标准的公布,规了变电站自动化的通信网络和系统,为不同设备厂商的无缝互操作提供了途径。

国综合自动化技术比较成熟的系统如:许继集团CBZ—8000B智能变电站自动化系统、南瑞RCS-9000系列,国电南自PS6000变电站自动化系统、北京四方CSC2000变电站综合自动化监控系统。

这些综合自动化系统采用先进的计算机技术、现代电子技术、通信技术和信息处理技术等实现对变电站二次设备的功能进行重新组合、优化设计,对变电站电气设备的运行情况进行监视、测量、控制、保护和协调,替代了变电站常规二次设备,提高变电站安全稳定运行水平、降低运行维护成本。

变电站综合自动化系统在二次系统具体装置和功能实现上,用计算机化的二次设备代替和简化了非计算机设备。

微机保护是变电站继电保护系统的重要组成部分,合理的保护方案设计和整定计算对充分发挥微机保护的性能,提高电力系统的安全稳定运行水平具有非常重要的作用。

根据所设计变电站工程项目的应用要求,在对微机保护装置的原理和构成特点进行深入研究和分析的基础上,选用具可靠性、安全性、动作最灵敏的微机保护装置进行了变电站设备保护系统的方案设计和保护装置选型,完成了相关的整定计算工作,及其断路器、隔离开关和互感器接线方式及其中央信号系统进行了设计,从而到达设计的目的。

本次设计中采用RCS-9000系列变压器保护装置;母线保护采用RCS-915AB系列差动保护装置,进行对母线保护;对断路器和隔离开关的操作回路采用PCS-222智能操作箱进行对断路器和隔离开关的控制;中央信号系统方面采用许继CAKJ-TYM-128液晶显示中央信号报警装置。

通过对110KV变电站继电保护的设计,使其能达到变电站的功能实现综合化,系统机构模块化,保护、控制、测量装置的数字化,操作监视屏幕化,运行管理智能化。

通过本次设计对变电站二次系统的主变压器、母线等设备装置的保护设计,从而达到对一次电气部分的具有监察、测量、控制、保护、调节、安全、稳定、灵活和经济运行的目的,提供有效地操控方案。

从而通过本次毕业设计,培养说明问题的能力、查询资料的能力、解决问题的能力,对专业课综合知识运用的能力。

以及走向工作岗位尽快适应工作环境和在工程项目上用所学专业知识解决项目工程的实际操作能力,为以后工作打下了良好的基础。

2 主变压器微机保护设计2.1 变压器保护的发展及现状变压器的保护发展历史,是以1931年R.E.Cordrary提出比率差动的变压器保护,标志着差动保护作为变压器主保护时代的到来。

1941年,C.D.Hayward首次提出了利用谐波制动的差动保护,将谐波分析引入到变压器差动保护中,并逐渐成为国外研究励磁涌流制动方法的主要方向。

1948年,R.L.Sharp和W,E.GlassBurn提出了利用二次谐波鉴别变压器励磁涌流的方法同时,还提出了差动加速的方案,以差动加速,比率差动,二次谐波制动来构造整个谐波制动式保护的主体,并一直延续至今。

微机变压器保护的研究开始于60年代末70年代初。

1969年,Rockerfeller 首次提出数字式变压器保护的概念,揭开了数字式变压器保护研究的序幕,只后O.P.Malik和Degens对变压器保护的数字处理和数字滤波做出了研究。

1972年,Skyes发表了计算机变压器谐波制动保护方案,使得微机式变压器保护的发展向实用化方向迈进。

变压器保护在进入数字微机时代后,利用微机强大的运算和处理能力,新的励磁涌流鉴别方法不断被提出,在国外形成研究热潮。

现在使用的微机变压器保护中识别励磁涌流的方法主要是:二次谐波闭锁、间断角闭锁、波形对称原理等。

实践表明,在过去几十年间,上述原理基本上能达到继电保护要求。

然而,随着电力系统以及变压器制造技术的日益发展,利用涌流特征的各种判据在实用中均遇到了一些无法协调的矛盾。

在高压电力系统中,由于TA饱和、补偿电容或长线分布电容等因素的影响,部敌障时差流中的二次谐波分量显著增大。

造成保护误闭锁和延时动作。

另一方面,现代大型变压器多采用冷轧硅钢片,饱和磁密较低而剩磁可能较小,使得变压器励磁涌流中的二次谐波和间断角均明显变小。

不断出现的问题,推动了研究的不断深入。

近年来,新器件、新技术的应用为变压器保护的研究与发展提供了一个广阔的天地。

数字信号处理器DSP(Digital Signal Processor)的出现。

不但可以提高微机保护数据采样与计算速度与精度,甚至可能改变往常微机保护装置的设计思路,使得复杂的算法得以在保护装置中实现。

随着变压器主保护的研究不断取得进展,变压器后备保护的研究和应用也日益引起人们的重视。

为了实现对现代技术后备的要求,目前的常用做法是,按典型方式构成不同型号的后备保护供用户选择,或根据用户实际需要进行软、硬件的调整。

为此,研制开发具有良好适应性的通用型变压器后备保护装置,降低开发和维护成本,提高保护装置的稳定性和可靠性具有十分重要的作用。

2.2 变压器的故障类型及保护配置2.2.1 变压器故障类型及其不正常运行状态变压器的故障可以分为油箱的故障和油箱外的故障。

油箱的故障指的是变压器各侧绕组之间发生的相间短路、同相部分绕组中发生的匝间短路以及大电流系统测的单相接地短路等。

油箱外的故障指的是变压器绕组引出端绝缘套管及短路线上的故障,主要有各种相间短路和接地短路。

比较常见的故障有变压器绕组引出端绝缘套管及引出短线上各种相间短路和接地短路,而变压器油箱各侧绕组直接发生相间短路的情况则较少。

外部相间短路引起的过电流,中性点直接接地电网中外部接地短路引起的过电流及中性点过电压,负荷长时间超过额定容量引起的过负荷,油箱漏油造成的油面降低,变压器温度升高或油箱压力升高或冷却系统故障等。

对于大容量变压器,因其铁芯额定工作磁通密度与饱和磁通密度比较接近,所以当系统电压过高或系统频率降低时,可能产生变压器的过励磁故障。

变压器的不正常运行状态也会危及变压器的安全,如果不能及时发现和处理,会造成变压器故障及损坏变压器。

所以,当变压器处于不正常运行状态时,继电保护装置应尽快发出告警信号,使运行人员及时发现并采取相应的措施,确保变压器的安全运行。

2.2.2 变压器保护配置原则根据《电力装置的继电保护和自动装置设计规》及其《电力工程电气设计手册(电气二次部分)_部分8》可知以下变压器的保护装置原则:○1反应变压器油箱部故障和油面降低的瓦斯保护0.8MVA 及以上的油浸式变压器和0.4MVA 及以上的车间油浸式变压器,均应装设瓦斯保护。

当壳故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。

当变压器安装处电源侧无断路器或短路开关时,可作用于信号。

○2对变压器引出线、套管及部的短路故障,应装设相应的保护装置,并应符合下列规定1)10MVA 及以上的单独运行变压器和6.3MVA 及以上的并列运行变压器,应装设纵联差动保护。

相关主题