当前位置:文档之家› 功率管

功率管

·开关功率管MOS扫盲篇[转]在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS管的介绍,特性,驱动以及应用电路。

1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

选择导通电阻小的MOS管会减小导通损耗。

现在的小功率MOS 管导通电阻一般在几十毫欧左右,几毫欧的也有。

MOS在导通和截止的时候,一定不是在瞬间完成的。

MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。

通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。

导通瞬间电压和电流的乘积很大,造成的损失也就很大。

缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。

这两种办法都可以减小开关损失。

4,MOS管驱动跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。

这个很容易做到,但是,我们还需要速度。

在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。

对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。

选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。

而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。

如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。

很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。

而且电压越高,导通速度越快,导通电阻也越小。

现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。

MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs。

讲述得很详细,所以不打算多写了。

5,MOS管应用电路MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。

场效应管目录[隐藏]场效应管1.概念:2.场效应管的分类:3.场效应管的主要参数:4.结型场效应管的管脚识别:5.场效应管与晶体三极管的比较[编辑本段]场效应管根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件。

[编辑本段]1.概念:场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件.特点:具有输入电阻高(100MΩ~1 000MΩ)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,现已成为双极型晶体管和功率晶体管的强大竞争者.作用:场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器.场效应管可以用作电子开关.场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源.[编辑本段]2.场效应管的分类:场效应管分结型、绝缘栅型(MOS)两大类按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种.按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.[编辑本段]3.场效应管的主要参数:Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压.Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压.gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数.BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS.PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量.IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSMCds---漏-源电容Cdu---漏-衬底电容Cgd---栅-漏电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gp---功率增益Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感Ls---源极电感rDS---漏源电阻rDS(on)---漏源通态电阻rDS(of)---漏源断态电阻rGD---栅漏电阻rGS---栅源电阻Rg---栅极外接电阻(外电路参数)RL---负载电阻(外电路参数)R(th)jc---结壳热阻R(th)ja---结环热阻PD---漏极耗散功率PDM---漏极最大允许耗散功率PIN--输入功率POUT---输出功率PPK---脉冲功率峰值(外电路参数)to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温Ta---环境温度T c---管壳温度T stg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)VGSR---反向栅源电压(直流)VDD---漏极(直流)电源电压(外电路参数)VGG---栅极(直流)电源电压(外电路参数)Vss---源极(直流)电源电压(外电路参数)VGS(th)---开启电压或阀电压V(BR)DSS---漏源击穿电压V(BR)GSS---漏源短路时栅源击穿电压VDS(on)---漏源通态电压VDS(sat)---漏源饱和电压VGD---栅漏电压(直流)Vsu---源衬底电压(直流)VDu---漏衬底电压(直流)VGu---栅衬底电压(直流)Zo---驱动源内阻η---漏极效率(射频功率管)Vn---噪声电压aID---漏极电流温度系数ards---漏源电阻温度系数[编辑本段]4.结型场效应管的管脚识别:判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道.判定源极S、漏极D:在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极.用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极.[编辑本段]5.场效应管与晶体三极管的比较场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计:晶体管:基极发射极集电极场效应管:栅极源极漏极要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。

相关主题