当前位置:文档之家› 洛必达法则解决问题

洛必达法则解决问题

洛必达法则简介:
法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a
g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;
(3)()()
lim x a f x l g x →'=', 那么 ()
()lim x a f x g x →=()()
lim x a f x l g x →'='。

法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;
(3)()()lim x f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()()
lim x f x l g x →∞'='。

法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a
g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;
(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()
lim x a f x l g x →'='。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○
1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。

○2洛必达法则可处理00,∞∞
,0⋅∞,1∞,0∞,00,∞-∞型。

○3在着手求极限以前,首先要检查是否满足00,∞∞
,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。

当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。


4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

二.高考题处理
1.(2010年全国新课标理)设函数2
()1x f x e x ax =---。

(1) 若0a =,求()f x 的单调区间;
(2) 若当0x ≥时()0f x ≥,求a 的取值范围
原解:(1)0a =时,()1x f x e x =--,'()1x f x e =-.
当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加
(II )'()12x f x e ax =--
由(I )知1x e x ≥+,当且仅当0x =时等号成立.故
'()2(12)f x x ax a x ≥-=-,
从而当120a -≥,即12
a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥.
由1(0)x e x x >+≠可得1(0)x e x x ->-≠.从而当12a >时, '()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,
故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <.
综合得a 的取值范围为1,2⎛
⎫-∞ ⎪⎝⎭
原解在处理第(II )时较难想到,现利用洛必达法则处理如下:
另解:(II )当0x =时,()0f x =,对任意实数a,均在()0f x ≥;
当0x >时,()0f x ≥等价于21
x x a e x --≤
令()21
x x g x e x --=(x>0),则322()x
x
x x g x e e x
-++'=,令()()220x x h x x x x e e =-++>,则()1x x
h x x e e '=-+,()0x h x x e ''=>, 知()h x '在()0,+∞上为增函数,()()00h x h ''>=;知()h x 在()0,+∞上为增函数,()()00h x h >=;()0g x '∴>,g(x)在()0,+∞上为增函数。

由洛必达法则知,200011222lim lim lim x x x
x x x x x e e e x +++→→→--===, 故12
a ≤
综上,知a 的取值范围为1,2⎛
⎫-∞ ⎪⎝⎭。

2.(2011年全国新课标理)已知函数,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

(Ⅰ)求a 、b 的值;
(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x
>+-,求k 的取值范围。

原解:(Ⅰ)221(
ln )'()(1)x x b x f x x x
α+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2
f f =⎧⎪⎨=-⎪⎩即 1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =。

(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x
=++,所以 22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x
---+=+--。

考虑函数()2ln h x x =+2(1)(1)k x x
--(0)x >,则22(1)(1)2'()k x x h x x -++=。

(i )设0k ≤,由22
2(1)(1)'()k x x h x x
+--=知,当1x ≠时,'()0h x <,h (x )递减。

而(1)0h =故当(0,1)x ∈时, ()0h x >,可得2
1()01h x x >-; 当x ∈(1,+∞)时,h (x )<0,可得211x
- h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +x
k . (ii )设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且
244(1)0k ∆=-->,对称轴x=111k >-.
当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故'h (x )>0,
而h (1)=0,故当x ∈(1,
k -11)时,h (x )>0,可得211x -h (x )<0,与题设矛盾。

(iii )设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'
h (x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得
2
11x - h (x )<0,与题设矛盾。

综合得,k 的取值范围为(-∞,0] 原解在处理第(II )时非常难想到,现利用洛必达法则处理如下:
另解:(II )由题设可得,当0,1x x >≠时,k<
22ln 11x x x
+-恒成立。

令g (x)= 22ln 11x x x +-(0,1x x >≠),则()()()22221ln 121x x x g x x +-+'=⋅-, 再令()()221ln 1h x x x x =+-+(0,1x x >≠),则()12ln h x x x x x '=+-,()212ln 1h x x x ''=+-,易知()212ln 1h x x x
''=+-在()0,+∞上为增函数,且()10h ''=;故当(0,1)x ∈时,()0h x ''<,当x ∈(1,+∞)时,()0h x ''>;
∴()h x '在()0,1上为减函数,在()1,+∞上为增函数;故()h x '>()1h '=0
∴()h x 在()0,+∞上为增函数
()1h =0
∴当(0,1)x ∈时,()0h x <,当x ∈(1,+∞)时,()0h x >
∴当(0,1)x ∈时,()0g x '<,当x ∈(1,+∞)时,()0g x '>
∴()g x 在()0,1上为减函数,在()1,+∞上为增函数
由洛必达法则知()2111
ln 1ln 12121210221lim lim lim x x x x x x g x x x →→→+⎛⎫=+=+=⨯-+= ⎪--⎝⎭ ∴0k ≤,即k 的取值范围为(-∞,0]
规律总结:对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法。

相关主题