烧结配料对选矿的影响摘要:烧结成分的稳定性对高炉顺行、以及增铁节焦具有重大的意义,因此,搞好配料工作是高炉优质、高产、低耗的先决条件,是获得优质烧结矿的前提,烧结矿使用的原料种类繁多,物理化学性质各不相同。
为了合理综合利用国家资源,生产出符合高炉冶炼要求而且成分相对稳定的烧结矿,同时还要兼顾生产过程的要求,烧结厂必须根据本厂原料的供应情况及物理化学性质选择合适的原料,通过计算确定配料比,并严格按配比确定每条电子称皮下料量,经常进行重量检查(跑盘)及时调整。
正文:所谓烧结,就是把粉状物料转变为致密体,是一个传统的工艺过程。
人们很早就利用这个工艺来生产陶瓷、粉末冶金、耐火材料、超高温材料等。
一般来说,粉体经过成型后,通过烧结得到的致密体是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。
烧结过程直接影响显微结构中的晶粒尺寸、气孔尺寸及晶界形状和分布。
无机材料的性能不仅与材料组成(化学组成与矿物组成)有关,还与材料的显微结构有密切的关系。
现代工艺所用的烧结方法有鼓风烧结、抽风烧结、在烟气中烧结三种,其中最常用的是抽风烧结。
现代工艺的烧结流程一般包括原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节。
在烧结过程中最重要的环节要数配料了,搞好配料工作是高炉优质、高产、低耗的先决条件,是获得优质烧结矿的前提,烧结矿使用的原料种类繁多,物理化学性质各不相同。
为了合理综合利用国家资源,生产出符合高炉冶炼要求而且成分相对稳定的烧结矿,同时还要兼顾生产过程的要求,烧结厂必须根据本厂原料的供应情况及物理化学性质选择合适的原料,通过计算确定配料比,并严格按配比确定每条电子称皮下料量,经常进行重量检查(跑盘)及时调整.目前国内常用的配料方法有两种,即容积配料法和重量配料法。
容积配料法是利用物料的堆比重,通过给料设备对物料容积进行控制,达到配加料所要求的添加比例的一种方法。
此法优点是设备简单,操作方便。
其缺点是物料的堆比重受物料水分、成分、粒度等影响。
所以,尽管闸门开口大小不变,若上述性质改变时,其给料量往往不同,造成配料误差。
重量配料法是按照物料重量进行配料的一种方法,该法是借助于电子皮带称和定量给料自动调节系统实现自动配料的。
优点是:重量配料比容积配料更加精确,特别是对添加数量较少的原料,这一点更明显。
除这两种配料法外,化学成分配料是一种目前最为理想的配料方法,它采用先进的在线检测技术,随时测出原料混合料成分并输入微机进行分析、判断、调整,使烧结矿质量稳固在高水平。
国外对这种方法也处于开发阶段,我国的宝钢、首钢已具备开发这种水平的条件。
原燃料性质及其对烧结过程和质量的影响:1、含铁原料精矿粉是含铁贫矿经过细磨选矿处理,除去了一部分脉石和杂质使含铁量提高的极细的矿粉。
在烧结生产过程中,除了精矿粉外,往往还添加一些其它的含铁原料(如高炉返矿、铁皮和富矿粉等),这样做有两个目的,一是为了增加烧结混合料成球核心,改善混合料的透气性,提高烧结机利用系数,降低烧结矿成本。
二是为了提高烧结矿的品位,为高炉顺产、高产创造条件。
返矿具有多孔的结构,含低熔点化合物,有利于烧结过程液相的生成,提高烧结矿的强度,有利于烧结料粒度的组成,改善透气性,提高烧结矿质量。
因此,返矿的配加量、返矿质量的好坏,直接影响烧结生产过程的进行。
2、熔剂(1)熔剂的分类熔剂可分为碱性熔剂、酸性熔剂和中性熔剂三类。
多国铁矿的脉石多以SiO2为主,所以普遍使用碱性熔剂。
碱性熔剂即含CaO和MgO高的熔剂。
常用的熔剂有:石灰石(CaCO3)生石灰(CaO)、消石灰(CaOH2)和白云石(主要是CaCO3和MgCO3)。
(2)烧结对熔剂的要求碱性氧化物含量要高;S、P杂质要少;酸性氧化物含量SiO2+Al2O3 越低越好,;粒度和水分适宜。
(3)配加熔剂的目的烧结生产过程中配加熔剂的目的主要有三个;一是将高炉冶炼时高炉所配加的一部分或大部分熔剂和高炉中大部分化学反应转移到烧结过程中来进行,从而有利于高炉进一步提高冶炼强度和降低焦比;二是碱性熔剂中的CaO和MgO与烧结料中的氧化物及酸性脉石SiO2、Al2O3 等在高温作用下,生成低熔点的化合物,以改善烧结矿强度、冶金性和还原性;三是加入碱性熔剂,可提高烧结料的成球性和改善料层透气性,提高烧结矿质量和产量。
白灰也称生石灰,主要成分是CaO,其遇水即消化成消石灰(CaOH2)后,在烧结料中起粘结剂的作用,增加了料的成球性,并提高了混合料成球后的强度,改善了烧结料的粒度组成,得高了料层的透气性。
其次,由于消石灰粒度极细,比表面积比消化前增大100倍左右,因此与混合料中其它成分能更好的接触,加快固液相反应,不仅加速烧结过程,而且防止游离CaO存在,而且它还可以均匀分布在烧结料中,有利于烧结过程化学反应的进行。
再次,白灰消化放出的热量,可以提高混合料料温。
从另一个方面来看,生石灰用量也不宜过多;a、生石灰用量过多,烧结料会过分疏松,混合料堆密度下降,生球强度反而会变坏。
由于烧结速度过快,返矿率增加,产量降低。
另外,生石灰量过多,烧结料水分不易控制。
b、烧结前必须使生石灰全部消化,使用生石灰时必须相应增加混合前打水量,保证必要消化时间,使生石灰颗粒一般在一次混合机内松散开,绝大多数消化,生石灰粒度一般要小于3mm。
c、生石灰在配料前的运输和储运中,尽量避免受潮,以防止事先消化去CaO的作用。
d、生石灰不宜长途运输和皮带转运,极易产生粉尘,恶化劳动条件。
(4)、烧结料中加入石灰石对烧结矿质量的影响a、CaO成分增加,其软化区间缩小,燃烧层厚度减薄,改善料层透气性。
b、石灰石的细粉比精矿粘结性好,有利于混合料成球,而较粗的部分本身就具有良好的透气性,可以改善烧结料透气性。
c、烧结过程中石灰石分解,放出CO2,起疏松料层作用,大大改善料层透气性。
通过石灰石的加入,使垂直燃烧速度增加,产量提高。
d、石灰石的加入量也不宜过多,如石灰石量过多成球条件变坏,由于透气性变好,机速加快,矿物结晶不完全。
另外,CaO过多易形成正硅酸钙体系液相,导致冷却时风化碎裂,使烧结矿强度降低。
(5)、用消石灰来代替石灰石的好处a、消石灰粒度很细,亲水性强,而且有粘性,大大改善烧结料透气性,提高小球强度。
b、消石灰比表面积大,增加混合料最大湿容量,可使烧结料过湿层有较好的透气性。
c、粒度细微的消石灰颗粒比粒度较粗的石灰石颗粒更易产生低熔点化合物,液相流动好,凝结成块,从而降低燃料用量和燃烧带阻力。
但消石灰用量也不宜过多,过多的消石灰使烧结料过于松散,烧结矿脆性大,强度下降,成品率下降。
3、烧结矿碱度(1)碱度的分类碱度是烧结矿的碱性氧化物与酸性氧化物百分比含量比值。
二元碱度R=Cao/SiO2;三元碱度R=CaO+MgO/SiO2;四元碱度R=CaO+MgO/SiO2+Al2O3烧结矿按R分为三种;普通烧结矿、自熔性烧结矿,高碱性烧结矿。
普通烧结矿又叫酸性烧结矿。
即烧结矿的碱度低于高炉炉渣的碱度,一般都有小于1.0,这种烧结矿在入炉冶炼时需加入一定数量的熔剂。
自熔性烧结的碱度等于或稍高于高炉炉渣的碱度,一般为1.2-1.5左右,其烧结矿在入炉冶炼时不需另加熔剂。
高碱度烧结矿又叫熔剂性烧结矿,其碱度高于高炉炉渣的碱度,一般都大于1.5。
其烧结矿在入炉冶炼时,可以代替部分或全部熔剂,可常与富矿或酸性烧结矿、酸性球团矿配合使用。
(2)高碱度烧结矿的特点因现在普遍生产的是高碱度烧结矿,就其特点做一概述;a、高碱度烧结矿强度高,稳定性好,粒度均匀,粉末少。
b、高碱度烧结矿具有良好的还原性,这是因为高碱度烧结矿是以易还原的铁酸钙为主要液相;随碱度提高,烧结矿中FeO降低,还原性得到改善;高碱度烧结矿处于还原性最好的结构状态。
其中的磁铁矿晶粒细小且密集,并被铁酸钙包裹或溶蚀。
c、高碱度的烧结矿软化开始温度和软化终了温度均有所下降。
d、高碱度烧结矿含硫量有所提高,这是因为烧结料中的CaO有吸硫作用,形成CaS留于烧结矿中。
(3)烧结中配加白云石的目的烧结料中加入白云石主要是为了提高烧结矿MgO含量从而提高烧结矿的质量(强度),并改善高炉炉渣的流动性。
以上文字和烧结生产实践证明,配料发生偏差是影响烧结过程正常进行和烧结矿产质量的重要因素。
固体燃料配入量波动±0.2%,会使烧结矿的强度和还原性受到影响,烧结矿的含铁量和碱度波动就会影响高炉炉温和造渣制度,严重时,会引发高炉悬料、蹦料现象。
因此各国都非常重视烧结矿化学成分的稳定性。
参考文献:(1)《烧结配料知识》;(2)牛秦洲,叶恒舟,吴一峰. 烧结厂烧结配料专家系统设计[J]桂林工学院学报, 2002,(04)(3)李小斌,梁英,杨重愚. 碱石灰烧结法生料浆配料算法[J]轻金属, 1992,(02)(4)袁晓丽. 烧结优化配矿综合技术系统的研究[D]中南大学, 2007(5)王喜玲. 基于预估校正法的大规模优化算法在烧结配料优化中的应用研究[D]中南大学, 2009(6)宋万军,王俊峰,颜军. 烧结现场适用配料计算[J]. 河南冶金, 1999, (06) .(7)张艳允. 邯钢烧结配料优化的探讨[J]. 烧结球团, 2002, (02) .(8)梁中渝,胡林,邓能运,袁勇. 优化烧结配料[J]. 重庆工业高等专科学校学报, 2002,(01) .(9)刘代飞,范晓慧,孙文东,蒋文笛. 烧结通用配料计算软件系统的开发[J]. 烧结球团, 2003, (01) .(10)潘金华. 集散控制系统在烧结配料中的应用[J]. 烧结球团, 2002, (06) .(11)高丙寅. 用Excel作烧结配料计算[J]. 烧结球团, 2001, (01) .(12)杨东进,陈继国,于忠念,向天德. 烧结配料优化分析[J]. 烧结球团, 2000, (01) .(13)那树人. 多种矿石的烧结配料计算[J]. 烧结球团, 1985, (02) .(14)周永铁. 烧结配料工序中的精矿总量控制[J]. 企业技术开发, 2005, (08) . (15)黄明芳. 浅谈烧结配料[J]. 南京广播电视大学学报, 2001, (02) .。