当前位置:文档之家› 材料加工原理作业答案

材料加工原理作业答案

作业第一章液态金属的结构与性质1、如何理解实际液态金属结构及其三种“起伏”特征?理想纯金属液态结构能量起伏和结构起伏;实际纯金属液态结构存在大量多种分布不均匀、存在方式(溶质或化合物)不同的杂质原子;金属(二元合金)液态结构存在第二组元时,表现为能量起伏、结构起伏和浓度起伏;实际金属(多元合金)液态结构相当复杂,存在着大量时聚时散,此起彼伏的原子团簇、空穴等,同时也含有各种固态、气态杂质或化合物,表现为三种起伏特征交替;能量起伏指液态金属中处于热运动的原子能量有高有低,同一原子的能量也会随时间而不停变化,出现时高时低的现象。

结构起伏指液态金属中大量不停“游动”着的原子团簇不断分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,这样此起彼伏,不断发生着的涨落过程,似乎团簇本身在“游动”一样,团簇的尺寸及内部原子数量都随时间和空间发生着改变的现象。

浓度起伏指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象2、根据图1-8及式(1-7)说明动力学粘度的物理意义和影响粘度的因素,并讨论粘度在材料成形中的意义动力学粘度的物理意义:表示作用于液体表面的外加切应力大小与垂直于该平面方向上的速度梯度的比例系数。

是液体内摩擦阻力大小的表征影响粘度的因素:1)液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高;2)粘度随原子间距δ增大而降低,与δ3成反比;3)η与温度T 的关系总的趋势随温度T 而下降。

(实际金属液的原子间距δ也非定值,温度升高,原子热振动加剧,原子间距随之而增大,因此η会随之下降。

)4)合金组元(或微量元素)对合金液粘度的影响,如果混合热H m为负值,合金元素的增加会使合金液的粘度上升(H m 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高)如果溶质与溶剂在固态形成金属间化合物,则合金液的粘度将会明显高于纯溶剂金属液的粘度,这归因于合金液中存在异类原子间较强的化学结合键。

通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高粘度在材料成形中的意义:1)粘度对铸件轮廓的清晰程度将有很大影响:在薄壁铸件的铸造过程中,流动管道直径较小,雷诺数值小,流动性质属于层流。

此时,为提高铸件轮廓清晰度,可降低液体粘度,此时应适当提高过热度或者加入表面活性物质等;2)影响热裂、缩孔、缩松的形成倾向:由于凝固收缩形成压力差而造成的自然对流均属于层流性质,此时粘度对流动的影响就会直接影响到铸件的质量;3)影响精炼效果及夹杂或气孔的形成:粘度η较大时,夹杂或气泡上浮速度较小,会影响精炼效果;铸件及焊缝的凝固中,夹杂物和气泡难以上浮排除,易形成夹杂或气孔;4、影响钢铁材料的脱硫、脱磷、扩散脱氧:而金属液和熔渣中的动力学粘度η低则有利于扩散的进行,从而有利于脱去金属中的杂质元素;5、熔渣及金属液粘度降低对焊缝的合金过渡的进行有利;6、对缩孔、缩松、晶粒大小和偏析的影响,即η愈大,铸件内部缩孔或缩松倾向增大。

另外,η大时,将使凝固过程中对流困难而造成晶粒粗化;影响凝固界面前端的熔点物质向后扩散而导致区域偏析3、简述表面张力的实质及影响表面张力的因素表面张力是由于物体在表面上的质点受力不均所造成。

1)原子间的结合力,物体内部原子间结合力u0↑→表面内能↑→表面自由能↑→表面张力↑;2)温度的影响:随温度升高而下降。

因为原子间距随温度升高而增大;3)溶质元素自由电子数目的影响,自由电子数目多的溶质元素,其表面双电层的电荷密度大,对金属表面的压力也大,从而使系统表面张力增加。

化合物表面张力之所以较低,是因其自由电子较少的缘故;4)合金元素或微量杂质元素对表面张力的影响,主要取决于原子间结合力的改变向系统中加入削弱原子间结合力的组元,会使u0 减小,使表面内能降低,这样,将会使表面张力降低,溶质与溶剂的原子体积之差表面活性元素均降低熔体的表面张力;影响液体表面张力的因素:内因:无机液体的表面张力比有机液体的表面张力大得多;水的表面张力72.8mN/m(20℃);有机液体的表面张力都小于水;含氮、氧等元素的有机液体的表面张力较大;含F、Si的液体表面张力最小;水溶液:如果含有无机盐,表面张力比水大;含有有机物,表面张力比水小。

外因:温度升高表面张力减小;压力和表面张力没有关系。

注:液体(0度以上时)表面张力最弱的是酒精4、试述表面张力在材料成形中的意义1)表面张力引起的曲面两侧压力差及其相关作用,在铸造和焊接中的意义,铸造过程中为防止粘砂,通常要求金属液与砂型不润湿。

但毛细管直径D和金属液静压头H越大,越易粘砂;焊接和铸造熔炼过程中高温下会产生融入到金属液中的气体,为加速凝固过程中气体的逸出,表面张力起重要作用;CO2气保焊熔滴过渡中易产生飞溅也可由表面张力引起的曲面两侧压力差得到解释。

焊丝含碳量越高,飞溅倾向越大2)液膜拉断临界力及表面张力对凝固热裂的影响,在凝固的后期,不同晶粒之间存在着液膜,由于表面张力的作用,液膜将其两侧的晶体紧紧地吸附在一起,液膜厚度越小,其吸附力量就越大。

液膜拉断时若无外界液体补充,那么晶粒间或枝晶间便形成了凝固热裂纹。

可见,液膜的表面张力越大,液膜越薄,则液膜的拉断临界应力f max 越大,裂纹越难形成。

3)表面张力对熔滴过渡的影响,熔化极电弧焊,颗粒状熔滴向熔池中过渡时,表面张力大的熔滴形成细颈的阻力大,致使熔滴颗粒增大,熔滴过渡频率降低而导致电弧稳定性较差,飞溅增多;改善熔滴过渡状态的途径在于降低其表面张力,主要有两措施:增大焊接电流,使熔滴温度上升,表面张力降低,熔滴颗粒减小(电流增大到一定程度时,由熔滴过渡转为细颗粒高速喷射过渡);适当增强电弧气氛的氧化性可降低表面张力,细化熔滴5、什么是液态金属的充型能力?影响充型能力的因素有哪些?液态金属充型能力:铸造过程中,液态金属充满铸型型腔,获得形状完整、轮廓清晰铸件的能力,即液态金属充填铸型的能力。

影响液态金属充型能力的因素:内因—金属本身的流动性,外因—铸型性质、浇注条件、铸件结构等因素的影响,1)金属性质方面的因素(流动性的高低),具有宽结晶温度范围的合金:流动性不好,结晶温度范围ΔT = T L-T S ↑→充型能力(流动性L)↓;合金液的比热、密度越大,导热系数越小,停止流动前的时间越长,充型能力好;2)铸型性质方面的因素,蓄热系数b2 越大,铸型激冷能力越强,金属液保持液态的时间就越短,充型能力下降;预热铸型能减小金属与铸型的温差,从而提高充型能力,具有发气能力的铸型,可减少流动的摩擦阻力而有利于充型;3、浇铸条件方面的因素,浇注温度越高、充型压头越大,则液态金属的充型能力越好;4、铸件结构方面的因素,在铸件材质、铸型性质及浇铸条件相同的条件下,同体积铸件模数越大,由于与铸型接触的表面积小,散热较缓慢,因而液态金属的充型能力越好。

铸件结构越复杂,厚薄过渡面越多,则型腔结构越复杂,流动阻力越大,充型能力也越差。

(可以认为合金的流动性是在确定条件下的充型能力。

灰口铸铁、硅黄铜的流动性最好;铸钢的流动性最差)6、试述液态金属停止流动的两种主要机理液态金属停止流动机理,随金属的结晶特性(取决于结晶温度范围)可分:①窄温度范围,在金属的过热热量未散失尽以前为纯液态流动,为第Ⅰ区,金属液继续流动,冷的前端在型壁上凝固结壳,而后的金属液是在被加热了的管道中流动,冷却强度下降。

由于液流通过Ⅰ区终点时,尚具有一定的过热度,将已凝固的壳重新熔化,为第Ⅱ区。

故,该区是先形成凝固壳,又被完全熔化。

第Ⅲ区是未被完全熔化而保留下来的一部分固相区,在该区的终点金属液耗尽了过热能量。

在第Ⅳ区,液相和固相具有相同的温度——结晶温度。

由于在该区的起点处结晶开始较早,断面上结晶完毕也较早,往往在它附近发生堵塞。

此类金属的流动性与固体层内表面的粗糙度、毛细管阻力及在结晶温度下的流动能力有关;②宽结晶温度合金停止流动机理,对于宽结晶温度范围的合金,试验表明,在液态金属的前端析出15-20%的固相量时,流动就停止。

结晶温度范围越宽,枝晶就越发达,液流前端析出相对较少的固相量,即在相对较短的时间内,液态金属便停止流动。

具有最大溶解度的合金流动性最小第二章凝固温度场1、名词解释:等温面;等温线;温度梯度;热流密度;铸件凝固时间;模数;焊接线能量等温面:温度场中在同一时刻下相同温度各点所组成的空间曲面。

等温线:某个特殊平面与等温面相截的交线。

温度梯度:对于一定温度场,沿等温面或等温线某法线方向的温度变化率。

温度梯度越大,图上反映为等温面(或等温线)越密集,具有方向性的物理量(所谓温度梯度就是两相邻等温面之间的温度,温度梯度是向量,其方向垂直于等温面,其正方向是指向温度增加的方向)。

热流密度:单位时间内通过单位面积的热量。

铸件的凝固时间:是指从液态金属充满型腔后至凝固完毕所需要的时间。

模数:将V1与A1推广理解为一般形状铸件的体积与表面积,并令 R= V1/A1。

R-为铸件的折算厚度。

[原意:V1-为铸件凝固层的体积(而并非是铸件体积),A1-铸件与铸型的接触面积]。

焊接线能量:单位长度焊件上的热输入,即E=q/v,q-为焊接热源的有效输入功率,v-为焊接速度。

2、什么是初始条件和边界条件?常见边界条件有哪几类?初始条件:是指物体开始导热时(即t = 0 时)的瞬时温度分布;边界条件:是指导热体表面与周围介质间的热交换情。

第一类边界条件:给定物体表面温度Tw随时间t的变化关系,表达式为Tw=f(t);第二类边界条件:给出通过物体表面的比热流随时间t的变化关系,表达式为;第三类边界条件:给出物体周围介质温度以及物体表面与周围介质的换热系数,表达式为:。

以第三类边界条件最为常见。

3、从界面阻热的变化讨论铸件凝固过程温度场分布①金属铸件与绝热型铸型—类型:砂型、石膏型、陶瓷型等多数非金属铸型属此类,铸型导热系数远小于凝固金属;特点:凝固铸件内及液态金属中温度分布可认为是近似均匀的。

此时铸件内的凝固、散热速度主要取决于铸型的热物理性能,界面热阻可忽略;铸型内表面温度接近铸件温度,铸型内温度梯度很大,当铸型足够厚时,其外表面温度保持起始温度。

②界面热阻较大的金属铸型---当金属型内耐高温涂层较厚或涂层导热性较差时,界面涂层的热阻较铸件与铸型的热阻大得多,此时铸件的凝固、散热速度主要取决于涂层的厚度与导热性能;铸件与金属型中的温度梯度可忽略不计,温度降集中在界面上③界面热阻很小的金属铸型--当金属型的表面涂层很薄涂层材料的导热性能很好时,界面热阻相对于金属铸型、铸件内的热阻可忽略不计,此时铸件的凝固、散热速度主要取决于铸件与铸型的热物理性能;可近似认为界面上没有温度降④非金属铸件与金属铸型—类型:注塑、熔模金属铸造中压制腊模;特点:非金属铸件导热性差,界面热阻和金属型热阻可忽略,铸件的凝固、散热速度主要取决于铸件自身的热物理性能,温度降主要发生在铸件一侧4、常见铸件凝固方式分为几类?影响凝固方式的因素有哪些?分为三类:当固液两相区很窄时称为逐层凝固方式,反之为糊状凝固方式(体积凝固方式),固液两相区宽度介于两者之间的称为“ 中间凝固方式”,铸件凝固方式对凝固液相的补缩能力影响很大。

相关主题