当前位置:文档之家› 空间数据基本理论

空间数据基本理论

1.空间地理数据的基本特征要完整地描述空间实体或现象的状态,一般需要同时有空间数据和属性数据。

如果要描述空间实体或的变化,则还需记录空间实体或现象在某一个时间的状态。

所以,一般认为空间数据具有三个基本特征:⑴空间特征表示现象的空间位置或现在所处的地理位置。

空间特征又称为几何特征或定位特征,一般以坐标数据表示。

⑵属性特征表示现象的特征,例如变量、分类、数量特征和名称等等。

⑶时间特征指现象或物体随时间的变化。

位置数据和属性数据相对于时间来说,常常呈相互独立的变化,即在不同的时间,空间位置不变,但是属性类型可能已经发生变化,或者相反。

因此,空间数据的管理是十分复杂的。

有效的空间数据管理要求位置数据和非位置数据互相作为单独的变量存放,并分别采用不同的软件来处理这两类数据。

这种数据组织方法,对于随时间而变化的数据,具有更大的灵活性。

2.如何在计算机内部用数字形式描述客观事物或现象对地理信息进行数字化描述,就是要使计算机能够识别地理事物的形状,为此,必须精确地指出空间模式如何处理,如何显示等。

在计算机内描述空间实体有两种形式:显式描述和隐式描述。

在计算机中的显式表示,就是栅格中的一系列像元。

隐式表示是由一系列定义了始点和终点的线及某种连接关系来描述。

计算机对地理实体的显式描述也称栅格数据结构,计算机对地理实体的隐式描述也称矢量数据结构。

栅格和矢量结构是计算机描述空间实体的两种最基本的方式。

在栅格数据结构中,整个地理空间被规则地分为一个个小块(通常为正方形),地理实体的位置是由占据小块的横排与竖列的位置决定,小块的位置则由其横排竖列的数码决定,每个地理实体的形态是由栅格或网格中的一组点来构成。

在矢量数据结构中,地理实体的形状和位置是由一组坐标对所确定。

矢量数据结构对地理实体的描述类似于地图对地理信息的描述,一般也把地理实体分为点、线、面三种,每种实体有不同的编码方法。

3.栅格结构数据的特点有哪些,栅格数据有哪些获取手段栅格结构的显著特点是:属性明显,定位隐含,即数据直接记录属性的指针或属性本身,而所在位置则根据行列号转换为相应的坐标,也就是说定位是根据数据在数据集中的位置得到的。

由于栅格结构是按一定的规则排列的,所表示的实体的位置很容易隐含在格网文件的存储结构中,在后面讲述栅格结构编码时可以看到,每个存储单元的行列位置可以方便地根据其在文件中的记录位置得到,且行列坐标可以很容易地转为其他坐标系下的坐标。

在格网文件中每个代码本身明确地代表了实体的属性或属性的编码,如果为属+性的编码,则该编码可作为指向实体属性表的指针。

由于栅格行列阵列容易为计算机存储、操作和显示,因此这种结构容易实现,算法简单,且易于扩充、修改,也很直观,特别是易于同遥感影像的结合处理,给地理空间数据处理带来了极大的方便。

栅格结构表示的地表是不连续的,是量化和近似离散的数据。

在栅格结构中,地表被分成相互邻接、规则排列的矩形方块(特殊的情况下也可以是三角形或菱形、六边形等),每个地块与一个栅格单元相对应。

栅格数据的比例尺就是栅格大小与地表相应单元大小之比。

在许多栅格数据处理时,常假设栅格所表示的量化表面是连续的,以便使用某些连续函数。

由于栅格结构对地表的量化,在计算面积、长度、距离、形状等空间指标时,若栅格尺寸较大,则造成较大的误差,由于在一个栅格的地表范围内,可能存在多于一种的地物,而表示在相应的栅格结构中常常是一个代码。

也类似于遥感影像的混合象元问题,如Landsat的MSS 卫星影像单个象元对应地表79米*79米的矩形区域,影像上记录的光谱数据是每个象元所对应的地表区域内所有地物类型的光谱辐射的总和效果。

因而,这种误差不仅有形态上的畸形,还可能包括属性方面的偏差。

栅格结构数据主要可由四个途径得到,即①目读法:在专题图上均匀划分网格,逐个网格地决定其代码,最后形成栅格数字地图文件;②数字化仪手扶或自动跟踪数字化地图,得到矢量结构数据后,再转换为栅格结构;③扫描数字化:逐点扫描专题地图,将扫描数据重采样和再编码得到栅格数据文件;④分类影像输入:将经过分类解译的遥感影像数据直接或重采样后输入系统,作为栅格数据结构的专题地图。

4.栅格结构数据的编码与压缩有哪些方法,各自有何特点在地理信息系统的空间数据结构中,栅格结构的编码方式主要有直接栅格编码、链码、游程长度编码、块码、四叉树码等。

直接栅格编码是最简单直观而又非常重要的一种栅格结构编码方法,通常称这种编码的图像文件为网格文件或栅格文件,栅格结构不论采用何种压缩编码方法,其逻辑原型都是直接编码网格文件。

直接编码就是将栅格数据看作一个数据矩阵,逐行(或逐列)逐个记录代码,可以每行都从左到右逐个象元记录,也可以奇数行地从左到右而偶数行地从右向左记录,为了特定目的还可采用其他特殊的顺序。

对压缩编码而言,目前有一系列栅格数据压缩编码的方法,如键码、游程长度编码、块码和四叉树编码等。

其目的,就是用尽可能少的数据量记录尽可能多的信息,其类型又有信息无损编码和信息有损编码之分。

信息无损编码是指编码过程中没有任何信息损失,通过解码操作可以完全恢复原来的信息,信息有损编码是指为了提高编码效率,最大限度地压缩数据,在压缩过程中损失一部分相对不太重要的信息,解码时这部分难以恢复。

在地理信息系统中多采用信息无损编码,而对原始遥感影像进行压缩编码时,有时也采取有损压缩编码方法。

链码(Chain Codes)又称为弗里曼链码[Freeman]或边界链码,链码可以有效地压缩栅格数据,而且对于估算面积、长度、转折方向的凹凸度等运算十分方便,比较适合于存储图形数据。

缺点是对边界进行合并和插入等修改编辑工作比较困难,对局部的修改将改变整体结构,效率较低,而且由于链码以每个区域为单位存储边界,相邻区域的边界将被重复存储而产生冗余。

游程长度编码(Run-Length Codes)是栅格数据压缩的重要编码方法,它的基本思路是:对于一幅栅格图像,常常有行(或列)方向上相邻的若干点具有相同的属性代码,因而可采取某种方法压缩那些重复的记录内容。

其方法有两种方案:一种编码方案是,只在各行(或列)数据的代码发生变化时依次记录该代码以及相同的代码重复的个数,从而实现数据的压缩。

事实上,压缩比的大小是与图的复杂程度成反比的,在变化多的部分,游程数就多,变化少的部分游程数就少,图件越简单,压缩效率就越高。

另一种游程长度编码方案就是逐个记录各行(或列)代码发生变化的位置和相应代码,游程长度编码在栅格压缩时,数据量没有明显增加,压缩效率较高,且易于检索,叠加合并等操作,运算简单,适用于机器存储容量小,数据需大量压缩,而又要避免复杂的编码解码运算增加处理和操作时间的情况。

块码是游程长度编码扩展到二维的情况,采用方形区域作为记录单元,每个记录单元包括相邻的若干栅格,数据结构由初始位置(行、列号)和半径,再加上记录单位的代码组成。

四叉树又称四元树或四分树,是最有效的栅格数据压缩编码方法之一,绝大部分图形操作和运算都可以直接在四叉树结构上实现,因此四叉树编码既压缩了数据量,又可大大提高图形操作的效率。

四叉树将整个图像区逐步分解为一系列被单一类型区域内含的方形区域,最小的方形区域为一个栅格象元,分割的原则是,将图像区域划分为四个大小相同的象限,而每个象限又可根据一定规则判断是否继续等分为次一层的四个象限,其终止判据是,不管是哪一层上的象限,只要划分到仅代表一种地物或符合既定要求的少数几种地物时,则不再继续划分,否则一直划分到单个栅格象元为止。

四叉树通过树状结构记录这种划分,并通过这种四叉树状结构实现查询、修改、量算等操作。

四叉树编码具有可变的分辨率,并且有区域性质,压缩数据灵活,许多运算可以在编码数据上直接实现,大大地提高了运算效率,是优秀的栅格压缩编码之一。

5.矢量结构数据的特点有哪些,矢量数据的获取手段有哪些矢量结构的特点是:定位明显、属性隐含,其定位是根据坐标直接存储的,而属性则一般存于文件头或数据结构中某些特定的位置上,这种特点使得其图形运算的算法总体上比栅格数据结构复杂的多,有些甚至难以实现,当然有些地方也有所便利和独到之处,在计算长度、面积、形状和图形编辑、几何变换操作中,矢量结构有很高的效率和精度,而在叠加运算、邻域搜索等操作时则比较困难。

矢量数据的获取手段是数字化仪手扶或自动跟踪数字化地图。

6.什么是拓扑结构,拓扑结构包含哪些内容在GIS中,为了真实地反映地理实体,不仅要包括实体的位置、形状、大小和属性、还必须反映实体之间的相互关系。

这些关系就是指它们之间的邻接关系,关联关系和包含关系。

点、线、面基本数据之间的关系,代表了空间实体之间的位置关系。

分析点、线、面三种类型的数据,得出其可能存在的空间关系有以下几种:点—点关系点和点之间的关系主要有两点(通过某条线)是否相连,两点之间的距离是多少?如城市中某两个点之间可否有通路,距离是多少?这是在实际生活中常见的点和点之间的空间关系问题。

点—线关系点和线的关系主要表现在点和线的关联关系上。

如点是否位于线上,点和线之间的距离等等。

点—面关系点和面的关系主要表现在空间包含关系上。

如某个村子是否位于某个县内?或某个县共有多少个村子?线—线关系线和线是否邻接、相交是线和线关系的主要表现形式。

如河流和铁路的相交,两条公路是否通过某个点邻接?线—面关系线和面的关系表现为线是否通过面或和面关联或包含在面之内?面—面关系面和面之间的关系主要表现为邻接和包含的关系。

7.选择栅格或矢量结构数据的考虑因素有哪些,如何选择恰当的数据结构栅格结构和矢量结构是模拟地理信息的两种不同的方法。

栅格数据结构类型具有“属性明显、位置隐含”的特点,它易于实现,且操作简单,有利于基于栅格的空间信息模型的分析,如在给定区域内计算多边形面积、线密度,栅格结构可以很快算得结果,而采用矢量数据结构则麻烦的多;但栅格数据表达精度不高,数据存储量大,工作效率较低。

如要提高一倍的表达精度(栅格单元减小一半),数据量就需增加三倍,同时也增加了数据的冗余。

因此,对于基于栅格数据结构的应用来说,需要根据应用项目的自身特点及其精度要求来恰当地平衡栅格数据的表达精度和工作效率两者之间的关系。

另外,因为栅格数据格式的简单性(不经过压缩编码),其数据格式容易为大多数程序设计人员和用户所理解,基于栅格数据基础之上的信息共享也较矢量数据容易。

8.GIS对空间数据是如何组织和管理的,空间数据分层的原则是什么依据地理实体之间不同的特征、相似的特征以及不同地理实体的组合特征对地理特征进行分类;通过分类,按专题来理解和描述现实世界的复杂关系,来实现数据编码,实现空间数据的组织。

地理空间上按图幅来组织和管理。

同一图幅内按图层来组织和管理,即图层来组织和管理空间数据。

相关主题