人类对水通道蛋白的研究
自然界很多包括人类在内的各种生物都是由细胞组成的。
细胞如同一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。
早年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允许特定的分子或离子出入。
而很久以前人们就知道人体重量的70%是水,水是构成生物体最重要的物质之一。
水是构成人体的重要物质,那么水是如何进入细胞的呢一直以来,人们都以为水分子进入细胞膜是靠自由扩散,但后来研究中发现细胞膜的主要成分是蛋白质和磷脂,其中磷脂双分子层构成细胞的结构骨架,而水是很难通过脂溶性物质的,那么水是很难进入细胞的,而细胞中含有大量水分那么那么水分子是如何进入细胞的呢
早在100多年前,人们就猜测细胞中存在特殊的输送水分子的通道。
20世纪50年代中期,科学家发现,细胞膜中存在着某种通道只允许水分子出入,人们称之为水通道。
因为水对于生命至关重要,可以说水通道是最重要的一种细胞膜通道。
尽管科学家发现存在水通道,但水通道到底是什么却一直是个谜。
20世纪80年代中期,美国翰霍普金斯大学医学院的科学家彼得·阿格雷研究了不同的细胞膜蛋白,经过反复研究,他发现一种被称为水通道蛋白的细胞膜蛋白就是人们寻找已久的水通道。
为了验证自己的发现,阿格雷把含有水通道蛋白的细胞和去除了这种蛋白的细胞进行了对比试验,结果前者能够吸水,后者不能。
为进一步验证,他又制造了两种人造细胞膜,一种含有水通道蛋白,一种则不含这种蛋白。
他将这两种人造细胞膜分别做成泡状物,然后放在水中,结果第一种泡状物吸收了很多水而膨胀,第二种则没有变化。
这些充分说明水通道蛋白具有吸收水分子的功能,就是水通道。
2000年,阿格雷与其他研究人员一起公布了世界第一张水通道蛋白的高清度立体照片。
照片揭示了这种蛋白的特殊结构只允许水分子通过。
水通道的发现开辟了一个新的研究领域。
目前,科学家发现水通道蛋白广泛存在于动物植物和微生物中,它的种类很多,仅人体内就有11种。
它具有十分重要的功能,比如在人的肾脏中就起着关键的过滤作用。
通常一个成年人每天要产生170升的原尿,这些原尿经肾脏肾小球中的水通道蛋白的过滤,其中大部分水分被人体循环利用,最终只有约1升的尿液排出人体。
阿格雷于2003年被授予诺贝尔化学奖。
诺贝尔奖评选委员会说,这是个重大发现,开启了细菌、植物和哺乳动物水通道的生物化学、生理学和遗传学研究之门。
水通道蛋白的发现
1988年,Agre等从人类红细胞膜上纯化分离分子量为32x10 的Rh多肽时,偶然鉴定到一种新的分子量为28x10 的整合膜蛋白,并且通过免疫印迹发现这类蛋白也存在于肾脏的近端肾小管中⋯,把它称为类通道整合膜蛋白(channel—like integralmembrane protein,CHIP28)。
随后,在1991年Agre和Preston成功克隆得到了CHIP28的eDNA.通过分析其编码的氨基酸序列,发现CHIP28含有6个跨膜区域、2个N一糖基化位点、且N端和C端都位于膜的胞质一侧。
另外,对比CHIP28与早期从牛晶体纤维中克隆得到的主要内源性蛋白(major in—trinsie protein,NIP)的DNA序列,发现二者具有高度同源性。
由于很早以前就证实了MIP 家族的成员蛋白参与形成允许水和其他小分子通透的膜通道,因此,推测CHIP28可能也具有类似功能‘。
1992年,Preston等通过在非洲爪蟾的卵母细胞中表达CHIP28,首次证实它是一种水通道蛋白。
非洲爪蟾的卵母细胞对水具有极低的渗透性,当向其中显微注射体外转录的CHIP28的RNA后,卵母细胞在低渗溶液中迅速膨胀,并于5 min内破裂这一现象表明注射CHIP28的RNA后卯母细胞膜的水通透性有了明显提高。
为了进一步通讯作者确定CHIP28的功能.将提纯的CHIP28构建在蛋白磷脂体中,构建后的蛋白磷脂体对水的通透性增长了50倍.但对尿素却不具备通透性[ 。
这些结果最终证实了CHIP28为水通道蛋白,后来它被命名
为水通道蛋白一1(aquaporin一1,AQP1)。
水通道蛋白分类
AQPO
AQP0最初称之为主体内在蛋白(major intrinsic protein,MIP),在晶状体纤维中细胞中表达丰富,与晶状体的透明度有关.hQpo的突变可能导致晶状体水肿和白内障。
小鼠缺乏AQPO将患先天性自内障
AQP1
AQP1是1988年发现的,开始将这种蛋白称为通道形成整合蛋白(CHIP),是人的红细胞膜的一
种主要蛋白。
它可以使红细胞快速膨胀和收缩以适应细胞间渗透性的变化。
AQP1蛋白也存在于
其他组织的细胞中。
AQP1及它的同系物能够让水自由通过(不必结合),但是不允许离子或是其他
的小分子(包括蛋白质)通过。
AQP1是由四个相同的亚基构成,每个亚基的相对分子质量为28kDa,每个亚基有六个跨膜结构
域,在跨膜结构域2与3、5与6之间有一个环状结构,是水通过的通道。
另外,AQP1的氨基端和羧基端
的氨基酸序列是严格对称的,因此,同源跨膜区(1,4、2,5、3,6)在质膜的脂双层中的方向相反。
AQP1
对水的通透性受氯化汞的可逆性抑制,对汞的敏感位点是结构域5与6之间的189位的半胱氨酸。
其
他几种AQP1与肾功能有关。
Peter Agre教授因发现水通道蛋白获得2003年诺贝尔化学奖
AQPl在质膜中以四聚体的形式存在,每个单体都由6个贯穿膜两面的长a螺旋构成基本骨架,其间还有两个嵌入但不贯穿膜的短a螺旋[4]。
每个单体蛋白的中空部分都形成具有高度选择性的通道,只允许水分子跨膜运输而不允许带电质子或其他离子通过,在功能上都可以作为一个独立水通道。
A QP1
AQP1是1988年发现的,开始将这种蛋白称为通道形成整合蛋白(CHIP),是人的红细胞膜的一
种主要蛋白。
它可以使红细胞快速膨胀和收缩以适应细胞间渗透性的变化。
AQP1蛋白也存在于
其他组织的细胞中。
AQP1及它的同系物能够让水自由通过(不必结合),但是不允许离子或是其他
的小分子(包括蛋白质)通过。
AQP1是由四个相同的亚基构成,每个亚基的相对分子质量为28kDa,每个亚基有六个跨膜结构
域,在跨膜结构域2与3、5与6之间有一个环状结构,是水通过的通道。
另外,AQP1的氨基端和羧基端
的氨基酸序列是严格对称的,因此,同源跨膜区(1,4、2,5、3,6)在质膜的脂双层中的方向相反。
AQP1
对水的通透性受氯化汞的可逆性抑制,对汞的敏感位点是结构域5与6之间的189位的半胱氨酸。
其
他几种AQP1与肾功能有关。
Peter Agre教授因发现水通道蛋白获得2003年诺贝尔化学奖
AQPl在质膜中以四聚体的形式存在,每个单体都由6个贯穿膜两面的长a 螺旋构成基本骨架,其间还有两个嵌入但不贯穿膜的短a螺旋[4]。
每个单体蛋白的中空部分都形成具有高度选择性的通道,只允许水分子跨膜运输而不允许带电质子或其他离子通过,在功能上都可以作为一个独立水通道
水通道蛋白存在位置
水通道蛋白分布广泛,目前已在哺乳动物、两栖类、植物、酵母、细菌以及各种各样的有机体中发现水通道蛋白的存在
目前已知哺乳类动物体内的水通道蛋白有十三种,其中六种位于肾脏,但科学家对于其他水通道蛋白的存在仍有疑虑。
最受关注的几项水通道蛋白比较如下:
水通道蛋白是一类高度保守的疏水小分子膜整合蛋白,各种亚型之间蛋白序列及三维结构非常相似。
哺乳动物水通道蛋白的分子大小在26×106 34x10 之间,氨基酸序列同源性为19%~52% ]。
因水通道蛋白的三维结构相似,一般以AQP1的结构作为代表。
AQP1是一条由269个氨基酸残基构成的单肽链.对比AQP1分子前后半段的氨基酸序列.发现2段序列具有相关性,推测AQP1在进化上可能是通过基因复制而来。
单肽链在细胞膜上往返折叠形成6个Ot螺旋的跨膜区域,并且水通道是由约翰霍普金斯大学医学院的。
水分子经过Aquaporin时会形成单一纵列,进入弯曲狭窄的通道内,内部的偶极力与极性会帮助水分子旋转,以适当角度穿越狭窄的通道,因此Aquaporin的蛋白构形为仅能使水分子通过之原因。
化学与生命科学学院
学号11270130
姓名余博。