吸附
x A、xB ——气体组分A、B的重量分数 ;
——吸附相中气体组分A、B的重量分数。
根据等温 吸附曲线 初始部分 斜率的大 小,把液 相单组分 吸附等温 线分为S、 L、H、C 四大类型, 而每一类 型又分成 5族,见 右图,
当吸附剂对溶液中 3溶液 溶剂的吸附忽略不 计时,构成了液相 液相单组分吸附平衡 单组分的吸附
保持温度不变,显示吸附
量与比压之间的关系曲线称为
吸附等温线。
纵坐标是吸附量,横 坐标是比压p/p0,p是吸附
质蒸汽的平衡压力, p0是
吸附温度时吸附质的饱和
蒸汽压。
通常将比压控制在0.3以下,防止毛细凝聚 而使结果偏高。
从吸附等温线可以反映出吸附剂的表面
性质、孔分布以及吸附剂与吸附质之间的相
互作用等有关信息。
常见的吸附等温线有如下5种类型:(图
中p/p0称为比压,p0是吸附质在该温度时的饱
和蒸汽压,p为吸附质的压力)
(Ⅰ)在2.5nm以下微
孔吸附剂上的吸附
等温线属于这种类
型。例如78K时N2在
活性炭上的吸附及
水和苯蒸汽在分子
筛上的吸附。
(Ⅱ)常称为S型等温
线。吸附剂孔径大
小不一,发生多分
子层吸附。在比压
V/Vm
则空白表面为(1 - q ) Vm为吸满单分子层的体积
V为吸附体积
r(吸附)=ka p( 1-q)
r(脱附)=kdq
达到平衡时,吸附与脱附速率相等。
r(吸附)=ka p( 1-q ) ka p(1 - q )=kdq
=
r(脱附)=kdq
设b = ka/kd
bp q 1 bp
V q 分母中为饱和吸附量;完全覆盖 Vm 这公式称为 Langmuir吸附等温式,式中 b称为吸附系数,它的大小代表了固体表面吸 附气体能力的强弱程度。
(2)气体或溶液的脱臭、脱色及溶剂蒸气的回 收,如在喷漆工业中,常有大量的有机溶剂逸 出,采用活性炭处理排放的气体,既减少环境 的污染,又可回收有价值的溶剂。 (3)气体中痕量物质的吸附分离,如纯氮、纯 氧的制取。 (4)分离某些精馏难以分离的物系,如烷烃、 烯烃、芳香烃馏分的分离。 (5)废气和废水的处理,如从高炉废气中回收 一氧化碳和二氧化碳,从炼厂废水中脱除酚等 有害物质。
图8-7 气相双组分吸附平衡曲线
• 吸附分离系数描述吸附平衡,定义为
yA / x A y B / xB
y B、x B ——分别为组分B在吸附相和气相中的摩尔分数。
2气体混合物
为活性炭吸附 • 氮和氧的混合 这样的系统包括吸附在内共三组分,所以标绘 氮氧气平衡的 三角相图(平衡数据时亦采用采用三角(等边三角或直角 气与活性炭充 150℃、 表示吸附相组成, 三角)相图表示 。 分接触达到平 1atm),三角 RE代表系线,表 吸附相中吸附质 衡时,气相中 表示单位质量吸附 示吸附平衡时气 形的三个顶点 的组成亦由横坐 氮和氧的浓度。 质所需要的吸附剂 相和吸附相中两 分别表示重量 标读出 氮和氧的重量 相的组成 . E点和 的量 组成为100%, 分率可用 AR 、 R点分别表示吸附 吸附相中 三角形AB边表 平衡时吸附相和 BR表示 三个组分 示氮氧共存, 气相中被吸附物 质的重量分数 的相对量 AC边表示氮和 活性炭共 表示吸附 存,BC则表示 相中吸附 氧和活性炭共 质的分率 存。G、H表 表示吸附平衡 示对单一气体 时气相组成 的吸附量 长度为C组分
2.2 吸附等温线方程式
• 亨利关系式
q=Hp Q=Hc
直线平衡关系。亨利型吸附等温线符合低浓度下的吸附。其中
H为常数, c p
分别为平衡时的压力、浓度。
、
弗兰德利希经验式
q kP
1/ n
q kC
1/ n
1 log q log k log p n
1 log q log k log c n
吸附质
解吸或脱附
2.1
吸附机理及分类
引起吸附的原因
范德华力
化学键力
静电引力
2.1
吸附机理及分类
吸附的分类
物理吸附
化学吸附
交换吸附
物理吸附与化学吸附
具有如下特点的吸附称为物理吸附: 1.吸附力是由固体和气体分子之间的范德华引 力产生的,一般比较弱。 2.吸附热较小,接近于气体的液化热,一般在 几个 kJ/mol以下。 3.会有所不同。
对气体的吸附量(q或者a)通常有两种表示方法: (1)单位质量的吸附
剂所吸附气体的体积
(标准状态)。
V q m
体积要换算成标准状况,101325Pa,273.15K, 1mol标准状况(STP)气体的体积为22.4dm3 (2)单位质量的吸附剂所 吸附气体物质的量。
n q m
吸附量
V q m
• 当吸附剂对混合气体中的两个组分吸附性能相 近时,可认为是双组分的吸附。通常温度升高、 压力下降会使吸附量下降。
右图反映了用石墨炭 吸附CFCl3-C6H6混 合气体,气相组成对 吸附量的影响。可以 看出,某组分在吸附 相和气相中摩尔分数 的关系与精馏中某组 分在气液两相摩尔分 数的关系非常相似。
现象。例如373K时,
水汽在活性炭上的
吸附属于这种类型。
吸附研究的 实验装置 之一
用气相 色谱动态法 研究气体或 蒸汽的吸附, 既快速又准 确。实验装 置如示意图 所示。
将活化好的吸附剂 装在吸附柱6中,将作为 载气的惰性气体N2或He 与适量的吸附质蒸汽混 合通过吸附柱。 分析吸附后出口气的成分或分析用惰性气体 洗下的被吸附气体的成分,从自动记录仪或与之 联结的微处理机处理的结果,就可以得到吸附量 与压力的关系、吸附等温线、比表面、孔分布等 有用信息。
1.吸附的功能与特点
功能 去除水中溶解态微量污染物。
有机物
胶体粒子
重金属离子
放射性元素 其他(微生物、余氯、臭味、色度)
1
吸附法功能与特点
特点 深度处理
可回收有用物料
净水预处理要求高
运转费用贵
2 吸附法基本原理
固体表面吸附
不同相表(界)面
剩余表面能
溶质浓集
吸附剂
c0 1 p p 1 或 0 q c p0 q P P q0 c0 0
(压力),C(P)为平衡 浓度(压力)。
A0 1 C C 1 0 0 q C C q0 A0 q0 A0 C
说明:
4.吸附稳定性不高,吸附与解吸速率都很快。 5.吸附可以是单分子层的,但也可以是多分子 层的。
6.吸附不需要活化能,吸附速率并不因温度的 升高而 变快。
总之:物理吸附仅仅是一种物理作用,没有 电子转移,没有化学键的生成与破坏,也没 有原子重排等。
化学吸附
具有如下特点的吸附称为化学吸附:
1.吸附力是由吸附剂与吸附质分子之间产生的 化学键力,一般较强。
q0bC Vmbp q 或者q 1 bC 1 bp
重排后可得:
1 1 1 1 q Vmb p Vm
1 1 1 1 q q0b C q0
这是Langmuir吸附公式的又一表示形式。 用实验数据,以1/p~1/q作图得一直线,从斜率 和截距求出吸附系数b和铺满单分子层的气体体 积Vm。
Vm是一个重要参数。从吸附质分子截面 积Am,可计算吸附剂的总表面积S和比表 面S(比)。 m为吸附剂质量
B-E-T关系式
物理吸附、 等温方程
B-E-T关系式
q 0 c0 p q 0 c0、A0为单分子吸附的 0 p p 1 c 1) p / p 吸附常数、q0为单分子 q0 A0 C 层吸附时最大吸附量、 q 0 0 C0(P0)为饱和浓度 C C 1 A0 1)C / C
在中等压力范围内,比较多的吸附体系符合弗兰德利希 式。从吸附类型看,弗兰德利希经验式对介于I和II之间 的吸附现象描述准确。
LANGMUIR朗格缪尔单分子层吸附等温式
Langmuir吸附等温式描述了吸附量与被吸附蒸 汽压力之间的定量关系。他在推导该公式的过程引 入了两个重要假设: (1) 吸附是单分子层的; (2) 固体表面是均匀的,被吸附分子之间无相互作用。 设:表面覆盖度q=
yA
AB -----组分分离因数;
y A、y A
AB x A P AB x A PB AB PA xB AB xB
k A PA / k B AB PA 分离因数不等 于1,值越大 PB k A PA / k B PB AB PA 分离效果愈好
p C (1) q P 0 P -P/P0或 q C 0 C 得一直线。
-P/P0作图,
(2)重要用途
可测定和计算固体吸附剂的比表面积
具体计算方法为:
由斜率和截距求得Vm,则吸附剂的比表面积为:
Vm N 0 Sb 22400 W
式中:
Sb—吸附剂比表面积,m2/g ;
n q m
对于一定的吸附剂与吸附质的体系,达到吸附
平衡时,吸附量是温度和吸附质压力的函数,即:
q f (T , p)
通常固定一个变量,求出另外两个变量之间的
关系,例如:
(1)T=常数,q = f (p),得吸附等温线。 (2)p=常数,q = f (T),得吸附等压线。 (3)q=常数,p = f (T),得吸附等量线。
2.吸附热较高,接近于化学反应热,一般在 40kJ/mol 以上。 3.吸附有选择性,固体表面的活性位只吸附与 之可发生反应的气体分子,如酸位吸附碱性 分子,反之亦 然。