当前位置:文档之家› 高中数学必修2立体几何专题二面角典型例题解法总结

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

?证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点,·∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG FGFG∴二面角S AM B --的大小为)36arccos(-|练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

(答案:二面角的余弦值为515)二、三垂线法 |三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

本定理亦提供了另一种添辅助线的一般规律。

如(例2)过二面角B-FC 1-C 中半平面BFC 上的一已知点B 作另一半平面FC 1C 的垂线,得垂足O ;再过该垂足O 作棱FC 1的垂线,得垂足P ,连结起点与终点得斜线段PB ,便形成了三垂线定理的基本构图(斜线PB 、垂线BO 、射影OP )。

再解直角三角形求二面角的度数。

例2.如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB11111111111F 1F 1F 13OB =1F 1F11OP OFCC C F=22122222OP =⨯=+22114322BP OP OB =+=+=272cos 142OP OPB BP ∠===17 EA ~C F E 1A 1B 1C 1D 1—F 1OPEABC F【A 1B 1C 1D 1D练习2如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.、分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD ⊥平面PAB 后,容易发现平面PAB ⊥平面ABCD ,点P 就是二面角P-BD-A 的半平面上的一个点,于是可过点P 作棱BD 的垂线,再作平面ABCD 的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。

(答案:二面角A BD P --的大小为439arctan) 三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。

即当二平面没有明确的交线时,一般用补棱法解决例3如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.`分析:本题的平面PAD 和平面PBE 没有明确的交线,依本法显然要补充完整(延长AD 、BE 相交于点F ,连结PF .)再在完整图形中的PF .上找一个适合的点形成二面角的平面角解之。

(Ⅰ)证略 解: (Ⅱ)延长AD 、BE 相交于点F ,连结PF .过点A 作AH ⊥PB 于H ,由(Ⅰ)知 平面PBE ⊥平面PAB ,所以AH ⊥平面PBE . 在Rt △ABF 中,因为∠BAF =60°, ;所以,AF =2AB =2=AP .在等腰Rt △PAF 中,取PF 的中点G ,连接AG . 则AG ⊥PF .连结HG ,由三垂线定理的逆定理得,PF ⊥HG .所以∠AGH 是平面PAD 和平面PBE 所成二面角的平面角(锐角). 在等腰Rt △PAF 中, 22.2AG PA == ABCED P'GHABCE)P在Rt △PAB 中,2255AP ABAH PBAP AB====+所以,在Rt△AHG 中,sin AH AGH AG ∠=== 故平面PAD 和平面PBE 所成二面角(锐角)的大小是arcsin:练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。

(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。

提示:本题需要补棱,可过A 点作CB 的平行线L 》(答案:所成的二面角为45O )四、射影面积法(coss S射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。

例4.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,;AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;分析:本题要求二面角B —AP —C 的大小,如果利用射影面积法解题,不难想到在平面ABP 与平面ACP 中建立一对原图形与射影图形并分别求出S 原与S 射 于是得到下面解法。

解:(Ⅰ)证略 (Ⅱ)AC BC =,AP BP =,APC BPC ∴△≌△.又PC AC ⊥,PC BC ∴⊥. 又90ACB ∠=,即AC BC ⊥,且ACPC C =,AC!BE P ACBP【CBB 1C 1A 1L。

BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,.AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.∴△ACE 是△ABE 在平面ACP 内的射影, 于是可求得:2222=+===CB AC AP BP AB ,622=-=AE AB BE ,2==EC AE 则1222121=•=•==∆CE AE S S ACE 射, ?3622121=•=•==∆EB AE S S ABE 原 设二面角B AP C --的大小为ϑ,则3331cos ===原射S S ϑ ∴二面角B AP C --的大小为33arccos =ϑ练习4: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.分析 平面AB 1E 与底面A 1B 1C 1D 1交线即二面角的棱没有给出,要找到二面角的平面角,则必须先作两个平面的交线,这给解题带来一定的难度。

考虑到三角形AB 1E 在平面A 1B 1C 1D 1上的射影是三角形A 1B 1C 1,从而求得两个三角形的面积即可求得二面角的大小。

(答案:所求二面角的余弦值为cos θ=32). 五、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

A 1D 1 :C 1ED BCA图5例4:如图,在五面体ABCDEF 中,FA⊥平面ABCD,AD ⊥12⊥A ,1=AB (),,,001B (),,,011C (),,,020D (),,,110E (),,,100F .21121M ⎪⎭⎫⎝⎛,,(),,,解:101B F -=(),,,110DE -=.2122100DEBF DE BF DE cos =•++==,于是BF B F DE 060(II )证明:,,,由⎪⎭⎫⎝⎛=21121AM (),,,101CE -= ()0AM CE 020AD =•=,可得,,,.AMD CE A AD AM .AD CE AM CE .0AD CE 平面,故又,因此,⊥=⊥⊥=•.CDE AMD CDE CE 平面,所以平面平面而⊥⊂(III )⎪⎩⎪⎨⎧=•=•=.0D 0)(CDE E u CE u z y x u ,,则,,的法向量为解:设平面.111(1.00),,,可得令,于是==⎩⎨⎧=+-=+-u x z y z x又由题设,平面ACD 的一个法向量为).100(,,=v练习5、如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB . (Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角1A BC A --的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明.分析:由已知条件可知:平面ABB1 A1⊥平面BCC1 B1⊥平面ABC于是很容易想到以B 点为空间坐标原点建立坐标系,并将相关线段写成用坐标表示的向量,先求出二面角的两个半平面的法向量,再利用两向量夹角公式求解。

相关主题