二氧化钛薄膜的研究进展引言TiO2是一种性能稳定的半导体材料,具有氧化活性高,对人体无毒害、成本低和无污染等特点,在许多领域有广泛的用途。
TiO2薄膜具有良好的化学稳定性、电学性能、优良的光催化特性和亲水性,使其在污水处理、空气净化、电子材料、光学材料、生物材料和金属表面防护等方面呈现出巨大应用潜力。
目前,TiO2薄膜的制备方法有很多,大体可以分为两大类:物理法和化学法。
物理法主要是利用高温产生的物质蒸发或电子、离子、光子等高能粒子的能量所造成的靶物质溅射等方法,在衬底上形成所需要的薄膜;化学法是利用化学反应在基片上形成薄膜的方法。
[1]制备方法1 溶胶-凝胶法溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶-凝胶法制备TiO2薄膜一般以钛醇盐及其相应的溶剂为原料,加入少量水和络合剂,经搅拌和陈化后形成溶胶,然后利用浸渍-提拉法、旋转涂层或喷涂等方法涂在基片表面,经过焙烧后形成薄膜。
常用的钛醇盐主要有:钛酸乙酯、钛酸四异丙酯、钛酸丁酯、钛酸四丁酯、四氯化钛和三氯化钛等等。
姚敬华等[2]人以钛白粉厂价格低廉的偏钛酸为原料,采用溶胶-凝胶法,结合微乳化技术和共沸蒸馏的工艺路线,制备了纳米锐钛矿型TiO2粉体。
用电镜(TEM)及X射线衍射(XRD)技术进行了表征。
结果表明:TiO2结晶良好,分布均匀,无团聚现象。
将一定量偏钛酸和NaOH按一定量比混合,再按一定固液比用水稀释,搅拌均匀后转入蒸馏瓶中,在沸腾状态下回流2 h后转入烧杯.在搅拌条件下,缓慢加入一定体积的浓硝酸至沉淀溶解,得到浅白色半透明状溶液。
在此溶液中加入一定体积的8%DBS溶液和二甲苯,搅拌30 min静置,液体分为3层(3相),取中间相进行蒸馏,至馏出液中不分层为止,过滤,将滤渣在80℃烘 4 h后,放入茂福炉,在650℃下灼烧3 h后得纳米TiO2微粒。
胡伟达等[3]人以酞酸丁酯为前驱体,通过溶胶-凝胶法制备二氧化钛溶胶,采用浸渍的方法在工业金刚石表面涂覆TiO2薄膜.涂覆采用浸渍-提拉法,即将金刚石基体浸泡于TiO2溶胶中1min 后,用1~3mm/s的提拉速度提出,然后在80℃烘箱中干燥5 min,干燥后重复进行浸渍-提拉涂膜。
随后在马弗炉中进行热处理,热处理工艺为:在100℃保温30 min,然后升温至550℃,保温1 h 后随炉冷却,得到TiO2薄膜。
扫描电镜和能谱分析结果表明,该方法可以在金刚石表面涂覆TiO2薄膜,薄膜将金刚石磨料包裹完全.红外光谱分析显示TiO2与基体金刚石表面形成稳定的Ti-O-C化学键.综合热分析对金刚石抗氧化性能检测结果为:涂膜金刚石较未涂膜金刚石抗氧化温度提高100℃梁亚红等[4]采用溶胶- 凝胶方法制备纳米TiO2 薄膜, 以钛醇盐为前驱物, 不同的螯合剂、溶剂和催化剂为原料, 通过改变原料配比及实验条件对纳米TiO2薄膜的制备过程的影响进行探讨, 从而取得制备纳米TiO2 薄膜的最佳原料配比、工艺过程和控制条件. 实验过程为:以钛酸四丁酯为前驱物, 无水乙醇为溶剂, 三乙醇胺或乙酰丙酮为螯合剂配置原驱液; 以无水乙醇为溶剂, 以HNO3 为催化剂, 加入一定量的去离子水配置滴加液; 在控制温度的条件下向原驱液中缓慢滴加滴加液并充分搅拌; 制得溶胶在室温下静置24 h 以备镀膜1光催化剂载体为陶瓷拉西环( 已用超声清洗过) , 将制得的溶胶以提拉法镀膜, 提拉速度控制在1~ 5 mm/ s; 在70- 80 ℃下干燥1 h, 之后放入马弗炉中以1. 5℃ / min 升温至450 ℃热处理2 h, 然后使之逐渐冷却至室温.实验结果表明, 当去离子水与钛醇盐摩尔比为2. 5, 乙醇与钛醇盐摩尔比为18, 螯合剂与钛醇盐摩尔比为1. 2, pH 根据需要取3- 5, 水解温度25- 35℃ , 热处理温度450℃ , 能够得到稳定的溶胶镀膜.姜鹏等[5]用钛酸四丁酯与无水乙醇混合后在强烈搅拌下缓慢滴入77℃下的HNO3水溶液中,保持恒温77℃×1 h 后得到半透明TiO2溶胶,然后用匀胶机向AZ91D 镁合金基片上涂覆,涂覆后置于干燥箱中干燥得到TiO2薄膜。
Zhibin Wu等[6]用钛异丙醇盐加入无水异丙醇中作为前驱体,具体操作:Titanium isopropoxide (0.2 mol,Aldrich Chemical Co.) was dissolved in 1 mol of anhydrous 2-propanol (Aldrich), to which 0.2 mol of di-2-propanolamine (Aldrich) and 0.4 mol of a water and 2-propanol solution (water/2-propanol ) 1:2, v/v) wereadded.然后在室温下充分搅拌2h,将获得一个透明的溶液,然后通过溶胶-凝胶法制得二氧化钛薄膜;Revathi Bacsa等[7]用titanium tetraisopropoxide作为钛源,用thiourea作为硫源,在乙醇中以1:4混合,充分搅拌后,去悬浮液,用300-550℃高温烘烤。
Thick fumes of sulfur dioxide and foam were observed during combustion leading to the porous TiO2 powders。
将样品在550℃下退火2h,350℃下退火8h,这样既可得到S-TiO2。
潘晓燕等[8]采用沉淀-胶溶-絮凝法,以偏钛酸为反应物,制备出纯锐钛矿型纳米TiO2粉末.具体制备方法如下:H2TiO3加水搅拌,形成均匀体系,移入冰水浴后,加入一定量的H2O2和浓氨水,搅拌,直至出现澄清黄绿色溶液为止,加入表面活性剂,静置数小时后得到黄色凝胶.然后用蒸馏水洗涤至中性,抽滤,再置于烘箱中加热至80~120℃烘干,获得固体颗粒.粉碎后放置在马弗炉中,于650~720℃煅烧3h,便得到白色的纯锐钛型纳米TiO2粉末.朱永法等[9]采用钛酸正丁酯作为前驱体,通过溶胶一凝胶法在不锈钢基片上制备了Tiq纳米薄膜.室温下将0.5mL化学纯的钛酸正丁酯Ti-(OBu)4溶液滴加到15mL无水乙醇中,经15min超声振荡,得到均匀透明的淡黄色溶液,密闭静置5h进行成胶化,得到具有一定粘度的透明溶胶.利用旋转镀膜法,将溶胶涂覆于经稀盐酸清洗的不锈钢基片上,得到湿凝胶薄膜.通过调节溶胶的粘度来控制薄膜层的厚度.前躯体薄膜在经过自然干燥后,再空气氛中经不同温度(350一550℃)热处理(恒温1h),就可形成TiO2薄膜.为了保证薄膜的均匀性,升温速率控制在5℃/min.Jeosadaque J. Sene等[10],用Titanium(IV) ethoxide (Gelest) and vanadium (V) triisopropoxide oxide作为前驱体制作溶胶,具体方法是:用不同比例的钒掺入溶有钛乙醇盐的无水乙醇中,然后充分搅拌48h,然后加入硝酸使得H2O/Ti/H+=200/1/0.5.Immediately after adding the alkoxide mixture to the nitric acid solution, the alcohol was boiled off at 80 °C, and the sol was stirred until a stable colloidal suspension was obtained, which typically required about 2 days.This suspension was then dialyzed against ultrapure water top H 3.5 by using a Spectra/Por 3 regenerated cellulose membrane (Spectrum Medical Industries, Inc.) with a molecular weight cutoff of 3500 daltons. These processing steps remove most of the organics from the suspension. Pure TiO2 suspensions were prepared followingthe same methods in order to compare these materials to the V-doped catalysts. Thin-film photoelectrodes were dip-coated onto a titanium foil back contact (0.05 or 0.5 mm thick, Goodfellow Cambridge Ltd), after heating the Ti foils at 350 °C, according to a procedure described earlier.The photoelectrodes were heated again at 350 °C after each coating卢安贤等[11]用体积比为Ti(OC4 H9 ): C2 H5OH :H20 : NH(C2H4OH)2 =21 : 71 : 2 : 6.的到二氧化钛溶胶加入不同量的F3+,用速度为2mm/s提拉法,得到样品,在100℃下干燥5min,然后在退火炉中500℃退火1h得到二氧化钛薄膜。
2 沉积法2.1 液相沉积法液相沉积法(LPD)是近年来在湿化学法中发展起来的一种薄膜制备方法,将基片浸入到适当反应液中就会沉积出氧化物或氢氧化物薄膜;成膜过程不需热处理,不需昂贵的设备,操作简单。
液相沉积法的基本原理是从过饱和溶液中自发析出晶体,反应液是金属氟化物的水溶液,通过溶液中金属氟代络离子与氟离子消耗剂之间的配位体置换,驱动金属氟化物的水解平衡移动,使金属氧化物沉积在基片上。
[1]刘成龙等[12]配制含氟钛酸铵和硼酸的溶液采用液相沉积法在316L不锈钢表面制备TiO2薄膜。
运用电化学方法对不同时间和不同热处理温度下制备的薄膜在Tyrodecs模拟体液中的腐蚀行为进行了研究。