当前位置:文档之家› 机械臂运动学

机械臂运动学

机械臂运动学基础1、机械臂的运动学模型机械臂运动学研究的是机械臂运动,而不考虑产生运动的力。

运动学研究机械臂的位置,速度和加速度。

机械臂的运动学的研究涉及到的几何和基于时间的内容,特别是各个关节彼此之间的关系以及随时间变化规律。

典型的机械臂由一些串行连接的关节和连杆组成。

每个关节具有一个自由度,平移或旋转。

对于具有n个关节的机械臂,关节的编号从1到n,有n +1个连杆,编号从0到n。

连杆0是机械臂的基础,一般是固定的,连杆n上带有末端执行器。

关节i连接连杆i和连杆i-1。

一个连杆可以被视为一个刚体,确定与它相邻的两个关节的坐标轴之间的相对位置。

一个连杆可以用两个参数描述,连杆长度和连杆扭转,这两个量定义了与它相关的两个坐标轴在空间的相对位置。

而第一连杆和最后一个连杆的参数没有意义,一般选择为0。

一个关节用两个参数描述,一是连杆的偏移,是指从一个连杆到下一个连杆沿的关节轴线的距离。

二是关节角度,指一个关节相对于下一个关节轴的旋转角度。

为了便于描述的每一个关节的位置,我们在每一个关节设置一个坐标系,对于一个关节链,Denavit和Hartenberg提出了一种用矩阵表示各个关节之间关系的系统方法。

对于转动关节i,规定它的转动平行于坐标轴z i-1,坐标轴x i-1对准从z i-1到z i的法线方向,如果z i-1与z i相交,则x i-1取z i−1×z i的方向。

连杆,关节参数概括如下:●连杆长度a i沿着x i轴从z i-1和z i轴之间的距离;●连杆扭转αi从z i-1轴到zi轴相对x i-1轴夹角;●连杆偏移d i从坐标系i-1的原点沿着z i-1轴到x i轴的距离;●关节角度θi x i-1轴和x i轴之间关于z i-1轴的夹角。

对于一个转动关节θi 是关节变量,d i 是常数。

而移动关节d i 是可变的,θi 是恒定的。

为了统一,表示为ii iq d θ⎧=⎨⎩转动关节移动关节 运用Denavit-Hartenberg (DH )方法,可以将相邻的两个坐标系之间的变换关系表示为一个4x4的齐次变换矩阵1cos sin cos sin sin cos sin cos cos cos sin sin 0sin cos 01ii i i i i i i i ii ii i i i iii a a A d θθαθαθθθαθαθαα--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦上式表示出了坐标系i 相对于坐标系i-1的关系。

即011i i i i T T A --=其中0i T 表示坐标系i 相对于世界坐标系0的位置与姿态,简称位姿。

2、正向和反向运动学对于一个n-轴刚性连接的机械臂,正向运动学的解给出的是最后一个连杆坐标系的位置和姿态。

重复利用上式,得到01112()n n n T A A A K q -==机械臂末端位姿在笛卡尔坐标系中有6个自由度,3个平移,3个旋转。

所以,一般来说具有6个自由度的机械臂可以使末端实现任意的位姿。

总的机械臂变换0n T 一般简写为T n ,对6个自由度的机械臂简写为T 6。

对于任意的机械臂,无论其它有多少个关节,具有什么结构,正向运动学解都是可以得到的。

在机械臂的路径规划中,用到的是反向运动学的解10()n q K T -=,它给出了特定的末端位姿对应的机械臂的关节角度。

一般来说,反向运动学的解不是唯一的,对具有某种结构的机械臂,封闭解可能不存在。

对于6自由度的机器人而言,运动学逆解非常复杂,一般没有封闭解。

只有在某些特殊情况下才可能得到封闭解。

不过,大多数工业机器人都满足封闭解的两个充分条件之一(Pieper 准则)(1)三个相邻关节轴交于一点(2)三个相邻关节轴相互平行如果机械臂多于6个关节,称关节为冗余的,这时解是欠定的。

如果对于机械臂某个特别的位姿,解不存在,称这个位姿为奇异位姿。

机械臂的奇异性可能是由于机械臂中某些坐标轴的重合,或位置不能达到引起的。

机械臂的奇异位姿分为两类:(1)边界奇异位姿,当机械臂的关节全部展开或折起时,使得末端处于操作空间的边界或边界附近,雅克比矩阵奇异,机械臂的运动受到物理结构的约束,这时机械臂的奇异位姿称为边界奇异位姿。

(2)内部奇异位姿,两个或两个以上的关节轴线重合时,机械臂各个关节的运动相互抵消,不产生操作运动,这时机械臂的奇异位姿称为内部奇异位姿。

机械臂运动学逆解的方法可以分为两类:封闭解和数值解、在进行逆解时总是力求得到封闭解。

因为封闭解的计算速度快,效率高,便于实时控制。

而数值解法不具有这些特点。

机械臂运动学的封闭逆解可通过两种途径得到:代数法和几何法。

一般而言,非零连杆参数越多,到达某一目标的方式也越多,即运动学逆解的数目也越多。

在从多重解中选择解时,应根据具体情况,在避免碰撞的前提下通常按“最短行程”准则来选择。

同时还应当兼顾“多移动小关节,少移动大关节”的原则。

n个自由度的机械臂的末端位姿由n个关节变量所决定,这n个关节变量统称为n维关节矢量,记为q 。

所有的关节矢量构成的空间称为关节空间。

机械臂末端的位姿用6个变量描述,3个平移(x,y,z)和3个旋转(ωx , ωy , ωz ),记x=(x,y,z, ωx , ωy , ωz ),x 是机械臂末端在基坐标空间中的坐标,所有的矢量x 构成的空间称为操作空间或作业定向空间。

工作空间是操作臂的末端能够到达的空间范围,即末端能够到达的目标点集合。

值得指出的是,工作空间应该严格地区分为两类:(1) 灵活(工作)空间 指机械臂末端能够以任意方位到达的目标点集合。

因此,在灵活空间的每个点上,手爪的指向可任意规定。

(2) 可达(工作)空间 指机械臂末端至少在一个方位上能够到达的目标点集合。

机械臂各关节驱动器的位置组成的矢量称为驱动矢量s ,由这些矢量构成的空间称为驱动空间。

3、Jacobian 矩阵机械臂的Jacobian 矩阵表示机械臂的操作空间与关节空间之间速度的线性映射关系,对于一个n 轴的机械臂,机械臂末端在基坐标系中的速度是x Jq =其中x 是6个元素的向量。

对于6个关节机械臂Jacobian 矩阵是方阵,如果它是可逆的,则可以由机械臂的末端速度求出各个关节的速度。

Jacobian 矩阵在机械臂的奇异位姿上是不可逆的。

在实际应用中,当机械臂的末端位置接近奇异位置时,Jacobian 矩阵是病态的,可能导致关节速度不能正确地得到。

上式解决的是正速度问题,即已知q 和q 求末端执行器的速度x 。

对于逆速度解问题,由上正向运动学式可以得到速度逆解公式为1q J x -=,注意到此时需要求雅可比矩阵的逆,由线性方程组理论知上式对任意的x ,q 都有解的必要条件是雅可比矩阵的秩rank(J)=6,这意味着机械臂的自由度数n ≥6。

这也说明了具有冗余自由度的机械臂,在末端位姿固定的条件下,能使关节在一个较大的关节空间的子空间中运动,有效地避开障碍或奇异位姿,并把关节位移限制在允许范围内,从而具有更大的运动灵活性。

雅可比矩阵可以看成是从关节空间到操作空间运动速度的传动比,同时也可用来表示两空间之间力的传递关系。

对于冗余自由度机械臂,其雅可比矩阵是长方矩阵,因J 满秩且方程个数少于未知数个数,所以有无穷多个解,这时,一般是求其中的最小范数解,或采用加权最小范数解也就是说使T q Dq 最小的解,其中D 是对称正定加权矩阵。

此时的解是使机械臂在能量消耗最小的情况下的解。

这时,逆速度问题便转为:求q 满足1q J x -=且使12TL q Dq =最小。

实际上等同于求性能指标L 在约束条件1q J x -=下的极值。

应用Lagrange 乘子法,以上极值为题的解是111()T T q D J JD J x ---=,当D =I 时,雅可比矩阵是1()T T J J JJ +-=,称为雅可比矩阵的伪逆。

下面通过一个两自由度的平面机械臂说明雅可比矩阵的特性,根据右图中的几何关系容易求得1121211121211212111212c c cos(),cos()s s sin(),sin()x l l c c y l l s s θθθθθθ=+==+⎧⎨=+==+⎩两边微分后写成矩阵形式121212x x d dx d dy yy θθθθθθ∂∂⎡⎤⎢⎥∂∂⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥∂∂⎢⎥⎣⎦⎣⎦⎢⎥∂∂⎣⎦即 112122121112122122s s s c c c l l l d dx l l l d dy θθ---⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦简写成 dx=Jd θ,式中J 就称为机械臂的雅可比(Jacobian )矩阵,它由函数x ,y 的偏微分组成,反映了关节微小位移d θ与机械臂末端微小运动dx 之间的关系。

将两边同除以dt dt 得到:dx/dt=Jd θ/dt,因此机械臂的雅可比矩阵也可以看做是操作空间中的速度与关节空间中速度的线性变换。

dx/dt 称为末端在操作空间中的广义速度,简称操作速度,d θ/dt 为关节速度。

可以看出,雅可比矩阵的每一列表示其它关节不动而某一关节以单位速度运动产生的末端速度。

由1121221211212212s s s c c c l l l J l l l ---⎡⎤=⎢⎥+⎣⎦可以看出,J 阵的值随末端位置的不同而不同,即θ1和θ2的改变会导致J 的变化。

对于关节空间的某些位姿,机械臂的雅可比矩阵的秩减少,这些位姿称为机械臂的奇异位姿。

上例机械臂雅可比矩阵的行列式为:122det()sin()J l l θ=,当θ2=0°或θ2=180°时,机械臂的雅可比行列式为0,矩阵的秩为1,这时机械臂处于奇异位姿。

机械臂在操作空间的自由度将减少。

如果机械臂的雅可比J 是满秩的方阵,相应的关节速度即可求出,即1J x θ-=,上例平面2R 机械臂的逆雅可比矩阵212212111212112121221l c l s Jl c l c l s l s l l s -⎡⎤=⎢⎥----⎣⎦,显然,当θ2趋于0°(或180°)时,机械臂接近奇异位姿,相应的关节速度将趋于无穷大。

为了补偿机器人末端执行器位姿与目标物体之间的误差,以及解决两个不同坐标系之间的微位移关系问题,需要讨论机器人连杆在作微小运动时的位姿变化。

假设一变换的元素是某个变量的函数,对该变换的微分就是该变换矩阵各元素对该变量的偏导数所组成的变换矩阵乘以该变量的微分。

例如给定变换T 为:11121314212223243132333441424344t t t t t t t t T t t t t t t t t ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦若它的元素是变量x 的函数,则变换T 的微分为:13111214232122243132333443414244t t t t x x x x t t t t x x x x dT dx t t t t x x x x t t t t x x x x ∂∂∂∂⎡⎤⎢⎥∂∂∂∂⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂=⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂⎢⎥∂∂∂∂⎢⎥∂∂∂∂⎣⎦下面讨论机械臂的微分运动,设机械臂某一连杆相对于基坐标系的位姿为T ,经过微运动后该连杆相对基坐标系的位姿变为T+dT ,若这个微运动是相对于基坐标系(静系)进行的(左乘),总可以用微小的平移和旋转来表示,即(,,)(,)x y z T dT Trans d d d Rot k d T θ+=所以有44(,,)(,)x y z dT Trans d d d Rot k d I T θ⨯⎡⎤=-⎣⎦根据齐次变换的对称性,若微运动是相对某个连杆坐标系i (动系)进行的(右乘),则T+dT 可以表示为(,,)(,)x y z T dT T Trans d d d Rot k d θ+=⋅所以有44(,,)(,)x y z dT T Trans d d d Rot k d I θ⨯⎡⎤=-⎣⎦令44(,,)(,)x y z Trans d d d Rot k d I θ⨯∆=-为微分算子,则相对基系有dT=Δ0T ,相对i 系有dT=T Δi 。

相关主题