现代仪器分析测试方法现代分析有分离分析法、热分析法、光学分析法、质谱分析法、电分析化学法、分析仪器联用技术这集中类型。
具体有:核磁共振(NMR),红外光谱(IR),紫外光谱(UV),质谱(MS),气相色谱(GC),液相色谱(LC),气相色谱与质谱联用(GC/MS)技术和液相色谱与质谱联用(LC/MS)技术。
核磁共振(NMR)核磁共振主要是由原子核的自旋运动引起的。
不同的它们可以用核的自旋量子数I来表示。
自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况。
原子核的自旋核磁共振用NMR(Nuclear Magnetic Resonance)为代号。
I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。
I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。
核磁共振现象原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。
μ=γP公式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值,当自旋核处于磁场强度为B0的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相象,称为拉莫尔进动,见图8-1。
自旋核进动的角速度ω0与外磁场强度B0成正比,比例常数即为磁旋比γ。
式中v0是进动频率。
ω0=2πv0=γB0微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是:m=I,I-1,I-2…-I原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出:正向排列的核能量较低,逆向排列的核能量较高。
它们之间的能量差为△E。
一个核要从低能态跃迁到高能态,必须吸收△E的能量。
让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。
这种现象称为核磁共振,简称NMR。
目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有较大的发展。
1H的核磁共振称为质磁共振(Proton Magnetic Resonance),简称PMR,也表示为1H-NMR。
13C 核磁共振(Carbon-13 Nuclear Magnetic Resonance)简称CMR,也表示为13C-NMR。
目前使用的核磁共振仪有连续波(CN)及脉冲傅里叶(PFT)变换两种形式。
连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(见图8-5)。
磁铁用来产生磁场,主要有三种:永久磁铁,磁场强度14000G,频率60MHz;电磁铁,磁场强度23500G,频率100MHz;超导磁铁,频率可达200MHz以上,最高可达500~600MHz。
频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。
磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。
射频发射器用来产生固定频率的电磁辐射波。
检测器和放大器用来检测和放大共振信号。
记录仪将共振信号绘制成共振图谱。
氢谱氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。
应用这些信息,可以推测质子在碳胳上的位置。
红外光谱(IR)用红外光谱仪器吸收光谱法定性或定量分析有机物和无机物含量。
工作原理红外光谱分析infrared spectra analysis利用红外光谱对物质分子进行的分析和鉴定。
将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。
每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。
红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。
当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。
分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。
分子的振动和转动的能量不是连续而是量子化的。
但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。
所以分子的红外光谱属带状光谱。
分子越大,红外谱带也越多。
种类红外光谱仪的种类有:①棱镜和光栅光谱仪。
属于色散型,它的单色器为棱镜或光栅,属单通道测量。
②傅里叶变换红外光谱仪。
它是非色散型的,其核心部分是一台双光束干涉仪。
当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。
经过傅里叶变换的数学运算后,就可得到入射光的光谱。
这种仪器的优点:①多通道测量,使信噪比提高。
②光通量高,提高了仪器的灵敏度。
③波数值的精确度可达0.01厘米-1。
④增加动镜移动距离,可使分辨本领提高。
⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。
用途红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。
红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。
已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。
利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。
由于分子中邻近基团的相互作用,使同一基团在不同分子中的特征波数有一定变化范围。
此外,在高聚物的构型、构象、力学性质的研究,以及物理、天文、气象、遥感、生物、医学等领域,也广泛应用红外光谱。
紫外光谱(UV)准确测定有机化合物的分子结构,对从分子水平去认识物质世界,推动近代有机化学的发展是十分重要的。
采用现代仪器分析方法,可以快速、准确地测定有机化合物的分子结构。
在有机化学中应用最广泛的测定分子结构的方法是四大光谱法:紫外光谱、红外光谱、核磁共振和质谱。
紫外和可见光谱(ultraviolet and visible spectrum)简写为UV。
紫外光谱的原理紫外光谱的产生在紫外光谱中,波长单位用nm(纳米)表示。
紫外光的波长范围是100~400 nm,它分为两个区段。
波长在100~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。
波长在200~400 nm称为近紫外区,一般的紫外光谱是指这一区域的吸收光谱。
波长在400~800 nm范围的称为可见光谱。
常用的分光光度计一般包括紫外及可见两部分,波长在200~800 nm(或200~1000 nm)。
分子内部的运动有转动、振动和电子运动,相应状态的能量(状态的本征值)是量子化的,因此分子具有转动能级、振动能级和电子能级。
通常,分子处于低能量的基态,从外界吸收能量后,能引起分子能级的跃迁。
电子能级的跃迁所需能量最大,大致在1~20 eV(电子伏特)之间。
根据量子理论,相邻能级间的能量差ΔE、电磁辐射的频率ν、波长λ符合下面的关系式ΔE=hν=h×c/λ式中h是普朗克常量,为6.624×10^-34J·s=4.136×10^-15 eV·s;c是光速,为2. 998×10^10 cm/s。
应用该公式可以计算出电子跃迁时吸收光的波长。
许多有机分子中的价电子跃迁,须吸收波长在200~1000 nm范围内的光,恰好落在紫外-可见光区域。
因此,紫外吸收光谱是由于分子中价电子的跃迁而产生的,也可以称它为电子光谱。
[1]电子跃迁的类型有机化合物分子中主要有三种电子:形成单键的σ电子、形成双键的π电子、未成键的孤对电子,也称n电子。
基态时σ电子和π电子分别处在成键轨道和π成键轨道上,n电子处于非键轨道上。
仅从能量的角度看,处于低能态的电子吸收合适的能量后,都可以跃迁到任一个较高能级的反键轨道上。
跃迁的情况如下图所示:上图中虚线下的数字是跃迁时吸收能量的大小顺序,该顺序也可以表示为n→π*<π→π*<n→σ*<π→σ*<σ→π*<σ→σ*即n→π*的跃迁吸收能量最小。
实际上,对于一个非共轭体系来讲,所有这些可能的跃迁中,只有n→π*的跃迁的能量足够小,相应的吸收光波长在200~800 nm范围内,即落在近紫外-可见光区。
其它的跃迁能量都太大,它们的吸收光波长均在200 nm以下,无法观察到紫外光谱。
但对于共轭体系的跃迁,它们的吸收光可以落在近紫外区。
根据上图,可以认为:烷烃只有σ键,只能发生σ→σ*的跃迁。
含有重键如C=C,C ≡C,C=O,C=N等的化合物有σ键和π键,有可能发生σ→σ*,σ→π*,π→π*,π→σ*的跃迁。
分子中含有氧、卤素等原子时,因为它们含有n电子,还可能发生n→π*、π→σ*的跃迁。
一个允许的跃迁不仅要考虑能量的因素,还要符合动量守恒(跃迁过程中光量子的能量不转变成振动的动能)、自旋动量守恒(电子在跃迁过程中不发生自旋翻转),此外,还要受轨道对称件的制约。
即使是允许的跃迁,它们的跃迁概率也是不相等的。
有机分子最常见的跃迁是σ→σ*,π→π*,n→σ*,n→π*的跃迁。
电子的跃迁可以分成三种类型:基态成键轨道上的电子跃迁到激发态的反键轨道称为N →V跃迁,如σ→σ*,π→π*的跃迁。
杂原子的孤对电子向反键轨道的跃迁称为N→Q跃迁,如n→σ*,n→π*的跃迁。
还有一种N→R跃迁,这是σ键电子逐步激发到各个高能级轨道上,最后变成分子离子的跃迁,发生在高真空紫外的远端。
紫外光谱图右图是乙酸苯酯的紫外光谱图。
紫外光谱图提供两个重要的数据:吸收峰的位置和吸收光谱的吸收强度。
从图中可以看出,化合物对电磁辐射的吸收性质是通过一条吸收曲线来描述的。
图中以波长(单位nm)为横坐标,它指示了吸收峰的位置在260 nm处。
纵坐标指示了该吸收峰的吸收强度,吸光度为0.8。
吸收光谱的吸收强度是用Lambert(朗伯)—Beer(比尔)定律来描述的,这个定律可以用下面的公式来表示:A=lg(I0/I)=kcl=lg(1/T)式中A称为吸光度(absorbance)。
I0是入射光的强度,I是透过光的强度,T=I/I0为透射比(transmiπance),又称为透光率或透过率,用百分数表示。
l是光在溶液中经过的距离(一般为吸收池的长度)。
c是吸收溶液的浓度。
κ=A/(cl),称为吸收系数(absorptivity)。