当前位置:文档之家› 远红外陶瓷材料功能与应用

远红外陶瓷材料功能与应用

功能与应用远红外陶瓷以能够辐射出比正常物体更多的远红外线(红外辐射率更高)为主要特征功能。

利用这一特殊性能,远红外陶瓷的应用主要分为2个方面:高温区的应用和常温区的应用。

在高温区主要应用于锅炉的加热,烤漆,木材、食品的加热和干燥等;在常温区主要应用于制造各种远红外保暖材料,如远红外陶瓷粉、远红外陶瓷纤维、远红外陶瓷聚酯,以及远红外功能陶瓷等。

如目前一些远红外陶瓷材料已经开始应用于运动训练康复、燃油炉灶节能、室内空气净化以及人体保健方面。

利用远红外陶瓷材料对燃油进行红外辐射,可以使燃油的粘度和表面张力降低,利于雾化和充分燃烧。

远红外陶瓷涂料(含纳米氧化钛涂料)具有催化氧化功能,在太阳光(尤其是紫外线)照射下,生成OH-,能有效除去室内的苯、甲醛、硫化物、氨和臭味物质,并具有杀菌功能。

各类远红外陶瓷涂料在居室、公共建筑物、交通工具上推广应用,将会改善人们的生活环境。

传统制备工艺远红外陶瓷材料可以分为红外激光材料、红外透射材料和红外辐射材料。

其核心技术是原料的选择、配方的比例以及陶瓷的烧结。

传统的远红外陶瓷材料制作工艺是利用具有远红外辐射性能的无机非金属微粉(又称:远红外辐射陶瓷粉)不同的红外光谱特性,经过一定的工艺成型、烧结而成。

传统的远红外陶瓷粉的制备方法有液相沉淀法和固相合成法2种,其基本工艺如下:液相沉淀法制备工艺:配料→溶解→加表面活性剂→沉淀→过滤水洗→脱水处理→干燥→气流粉碎→性能检测→备用。

固相合成法工艺:配料称量→球磨混合→高温合成→磨细→过筛→性能检测→备用。

烧结主要采用常规烧结或热压烧结。

例如:以石英、长石、硬质高岭土为主要原料,其制备工艺包括:将原料分别粉碎过筛,将灰色千枚岩、黑电气石、石英等与粘合剂混合、造粒、烘干,烧制成陶粒;稀土等如上步骤烧制成陶粒;将石英、长石、滑石分别煅烧制成熟料;将陶粒粉与熟料等经混合等工艺,烧制成远红外陶瓷。

制备工艺新进展随着对远红外陶瓷材料研究的进一步深入,有许多更新的制备方法不断出现。

如:共沉淀法、水解沉淀法、水热法、溶胶- 凝胶法、微乳液法(反胶束法)等。

一些研究者甚至探索出了更新的制备远红外陶瓷超细粉的思路,如高温喷雾热解法、喷雾感应耦合离子法等。

这些方法的生产工艺与传统的化学制粉工艺截然不同,是将分解、合成、干燥甚至煅烧过程合并在一起的高效方法,但这些方法尚不成熟,需要进一步的研究和探索。

目前,先进的陶瓷烧结工艺有:气氛加压烧结、热等静压烧结、微波烧结、等离子体烧结、陶瓷自蔓延烧结等。

另外,大量先进设备(如XRD 衍射仪、红外光谱吸收仪、热分析仪、扫描电子显微镜等) 的应用,使科技工作者对陶瓷的微观结构有了更深刻的了解,促进了远红外陶瓷制品综合性能的提高。

浅析光辐射材料在治理大气污染中的作用[摘要]介绍了远红外光辐射陶瓷材料及用其制成的各种涂料特性及应用,探讨了其节约能源、降低大气污染的机理,指出远红外光辐射陶瓷材料是人类治理大气环境污染的新途径。

[关键词]光辐射材料;远红外陶瓷;大气污染;燃料;涂料自然界有无数的远红外辐射源:太阳、星星、城市、乡村、矿山、河川、湖泊、海洋、洞穴、高山、树木、大气、云雾、建筑物、各种金属及人体,还有人造光辐射陶瓷材料,它们都能发射出远红外电磁波射线。

远红外陶瓷材料就是一种人造的光辐射源,它能依据人们所需要的波长而辐射特定波段的光,而且它们的穿透力强,穿透大气时损耗很少。

在保健医疗各个方面已开发了多种产品,制成的各种远红外保健衣、救心卡、敷贴布等等商品,用于促进人体血液循环,调理身体健康,治疗多种慢性疾病,已得到多方的验证与市场化的推广。

它所发出的电磁波,亦称之为“生命波”,日本人亦有称之为“育成光线”。

这种电磁波仅包含远红外线电磁波中的一小段,相当于人体温度对应发射的那段波长,近几年来远红外陶瓷材料的应用,已延伸到环境保护的多方面。

1 远红外陶瓷材料用于节能、减轻大气污染的机理自然界有无数的远红外辐射源,有效地利用它们发射出的远红外电磁波射线,激活燃料,使其分散、雾化而提供最佳的燃烧气氛,以实现燃料的充分燃烧,节约燃料,降低污染物向环境的排放,直接关系到是否节能与减轻环境污染的重要问题。

红外线电磁波射线都是由物质内部的运动变化,如分子、离子和原子等的转动、振动、电子跃迁等的辐射而产生。

绝对温度高于 0k ( -273.15 )的物体都能产生红外辐射。

基于物质内部结构中存在非对称性的电荷,其电荷电中心不重合所形成偶极距分子中的原子,受到环境中能量的激发而伸缩振动或转动,成为远红外辐射的电磁波。

对陶瓷材料而言,其中组成分子结构中的多原子分子在振动时,改变分子的对称性而使偶极距发生变化的那种振动方式,就会吸收红外线,在红外光谱中产生吸收带,这种振动方式被称为是“红外活性”。

但振动过程中偶极距不改变,即偶极距经常为零的振动方式被称为是“非红外活性”,虽然分子可按这种方式振动,但由于它周围的电磁场不产生任何干扰或影响,结果就不产生红外发射和吸收。

振动过程中产生的偶极距变化越大,或组成分子的原子电负性相差越大,振动过程中的偶极距变化也就越大,红外吸收带就越强,发射的电磁波就越强。

远红外陶瓷材料产生的电磁波对燃料辐射的强弱,与材料辐射的波段、强度(照射深度)、能量转化效率和温度有关,当其发射的辐射波长范围与被辐射体吸收波长完全匹配而产生共振并在振幅增加时,才能使燃油吸收的辐射能达到最大的利用效果。

燃油是包括一系列的碳氢化合物液态燃料(燃煤也是可转化为气态的碳氢化合物,在燃烧炉中才进行燃烧反应),在燃油中的分子具有碳链结构,各分子之间是处于团聚和一种相互“缠绕”的状态,因而通常表现为具有一定的粘度,影响它在燃烧时雾化和蒸发。

燃油选用那个波段的波长,应以其吸收特性在标准光谱图上吸收的区间为准(在特定工作温度下)。

但当它们的分子吸收带与远红外陶瓷材料所发射的辐射波段相匹配,产生共振,随即燃油分子吸收了红外辐射能,分子的活化能降低,运动加剧,分子链很快地“伸展”开来,分子结构发生变化,使碳链断裂,由大分子变成小分子,分子间凝聚力减小,宏观表现为燃油吸收红外辐射能后粘度和表面张力降低,变得容易蒸发,从而使燃油的雾化和蒸发量提高。

因此,燃油分子处于细微化的活跃状态进入燃烧室,与空气充分混合,从而使燃烧充分,污染物排放量减少,因而达到节油及减轻污染的目的。

2 远红外光辐射陶瓷材料用于制备各种环保涂料在用于环保涂料方面,新型光辐射材料的发射率,是各种远红外陶瓷材料单体发射的光谱的叠加,取决于辐射源的实际工作温度,视被辐射体的光谱特性及其工作环境等具体情况而定,不是发射率越高越好,只有选择性与被辐射体相互匹配的波段,才能充分发挥辐射源的效率,减少被辐射物吸收无效辐射能造成的损耗。

因为各种类型环保涂料功能不同,如室内、外空气净化,改善环境小气候,养身保健等,所选用的波段应有所区别。

对室内、外空气净化,只有选定与污染物的波段相匹配时才能有效降解它们,达到净化空气的目的。

有些无机光催化材料仅需要在温度和湿度的作用下,即使在缺乏光照(指紫外线、可见光波段)的环境中也能产生远红外辐射,对污染物进行降解,它只是通过物理吸附、化学吸附、离子吸附和分解,产生强氧化剂,就足以消除有害物质的污染,使得在阴暗的环境中达到降解污染物、净化环境的目的。

这与通常所说的光催化反应除污的作用原理有所不同。

电气石就是其中的一类。

它是 20 世纪 90 年代末发现的可用于环境净化的多元素天然矿物,是以含硼为特征的的环状结构硅酸盐矿物。

目前,人们已利用电气石自身发射远红外射线及热差变化所产生正负电磁场的物理效应来净化环境,降低大气中有害离子对人体的危害,增加空气中的负离子成分,活化人体机能,提高人体健康水平。

在环保、医疗、日用化工、建筑装潢、水处理、空气净化以及屏蔽电磁辐射、隐蔽目标等领域,电石气也已得到应用。

另一类环保涂料是利用了多波段光催化陶瓷材料。

该材料除了含有远红外波段外,并有红外、可见光或微量自然辐射物,是在主要组分中加入少量稀土氧化物和微量过渡金属氧化物,提高远红外陶瓷粉体材料晶格振动活性,而具有激活催化作用,从而显著提高远红外陶瓷粉的全辐射发射率。

这种多波段光催化材料的电性极化现象,可以电离空气中的水分子,达到释放羟基负离子降解污染物的效果。

由于其大大利用了太阳光全波段能量,又增强了远红外光谱的能量,从而提高了净化环境的效果。

如具有空气净化功能的外墙涂料(包含有纳米级二氧化钛的环保涂料),可在阳光的辐射下,尤其是在紫外线的辐射下(辐射波段 200~ 780nm ),使稀土氧化物固体表面生成空穴和电子。

如烃类、苯、甲醛、硫化物、氨等,并具有除臭、杀菌功效,能与那些有毒有害气体反应生成无害的物质。

由于太阳光的热大部都集中在 200~400nm 波长范围内,能量密度最高的是波长为425nm的阳光,而能量的绝大部分都存在于波长短于 150nm 的太阳光之中。

因此,为了最有效地吸收太阳能,就必须对波长短于 150nm 范围内的太阳光具有最大的吸收率,来提高光辐射的利用效率。

这种多功能触媒环保涂料适用于新建筑物和房屋装修的除臭和杀菌外,还适用于影剧院、会议厅、夜总会、幼儿园、学校、写字楼、宾馆等公共场所的防臭、除臭、防霉、杀菌和改善空气质量,大大减轻人们抽烟对环境造成的污染。

对于轿车、公共汽车、火车、飞机等交通工具,它能净化由人体臭气或抽烟所形成的污浊空气,并且能够防霉去霉。

在家居环境里,它能清除宠物和洗手间残留不去的臭味,同时发挥杀菌防病的功能,并可用于降低交通干线上车辆尾气的污染。

结语光辐射材料是一种取之不尽的能源,是人类发展,保护环境、治理环境所寻找的清洁能源。

人类面对的问题是要在自然界无数辐射源照射下繁衍、发展、创新,人类活动给这个环境所带来新的污染物与自然界存在的那些污染物、有危害的污染源,都有待时日的推移,考核其是否在有效地自然降解。

研究人造光辐射材料的作用,就是要加速人造光辐射材料对各种污染物的降解,要增加其光辐射波段的特性强度,及其在环境中能否与被辐射污染物的波段相互匹配,完全产生共振,来充分发挥辐射源的效率,以免无效辐射能的内耗,造成辐射能的损失。

随着光辐射材料的深入研究与开发,它必将为我们提供一条治理大气环境污染的崭新途径,为人类创建舒适的生存环境。

相关主题