当前位置:文档之家› 板(膜)理论吸声公式及声强反射系数

板(膜)理论吸声公式及声强反射系数

0.序言
在建筑吸声和噪声控制领域,板材料和膜材料是常用的吸声材料之一。关于板材料和膜 材料的吸声性能国内外已有大量研究 (1−10) 。本根据动量守恒定律、牛顿力学分析、膜振动 理论推导出板(膜)材料的吸声理论公式。通过分析,该公式与板(膜)材料的吸声规律吻 合较好。
作者曾在相关文献中证明,纤维材料的吸声也是来自于材料的振动 (11−14) 。以此概念为 前提,板(膜)材料吸声理论公式也被应用于纤维材料当中。通过分析证明,板(膜)材料 吸声理论公式也适合于表达纤维材料吸声性能。
2
=
∂2 ∂x 2
+
∂2 ∂y 2
从而有,
∇ r 2η

1 c2
∂ 2η ∂t 2
=
−p c 2σ
……………………….(7)
-2-

其中
∇r
=
∂2 ∂r 2
+
1 r
∂ ∂r
令解为
η(t, r) = R(r)e jωt
带入(7)式可得
……………………….(8)
弹簧位移也就是材料波动的振幅。由此,我们令
s=η (t, r) = η a e j(ωt+π / 2) , v = va e jωt ,
将此带入(6)式可解得
a = 1 − ( kη a )2 ωmva
………………………………….(12)
根据前面的定义。驻波管内作用于材料的 1/4 波长的质量可表示为, m = πr 2 ρ0c0 ,( r 为 4f
设材料表面受到声压为
p = pa2e jωt
的声压作用,其中 pa2 为声压振幅
(N/m 2 ), ω 为声波的圆频率,那么在 dxdy 单元上就受到如下的外力作用。
FF = p2dxdy
将上式带入膜波动方程
∇ 2η = 1 ∂ 2η , c 2 ∂t 2
式中
c=
T σ
,T 为膜的张力,σ
为膜的面密度。∇
句话说。由此可以得出以下结论:自由声场中的中间媒质层可以看做是膜和弹簧组成的一个
简单模型,这个模型所得出的声强反射系数,与由小振幅声波的一维物态方程所得到的声强
反射系数的误差小于万分之一。若 sin 函数的角度值无限精确的取下去,则误差将趋于 0。 然而由膜-弹簧模型却能得到随入射声波的波动而变化的精细的声强反射系数公式。
得 (2) ε =
p
2 a
。则声强 I ' =
p
2 a
。由此,对于自由声场中的中间媒质层,声强反射系
2 ρ 0 c02
2ρ0c0
数为
I ' = pa22 / 2ρ0c0
p
2 a1
/

0c0
(18)
根据上述讨论,式(18)表达的是声波传递中的平均声能变化情况。对比式(17)和
式(18),当式(17)中的 sin 函数取平均值时(角度值取一位小数), I = 1.0000735I ' 。换
-4-
吸声系数 吸声系数
10cm空腔
塑料膜 纤维板
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
125 200 315 500 800 1250 2000 3150
频率/Hz
图 4 10cm 空腔时两种材料的吸声频谱

20cm空腔
碰撞后空气速度为 v 1 ,材料速度为 v 2 根据动 量守恒定律。
mv = Mv2 + mv1
(1)
根据吸声系数的定义
a = 1 − ( par )2 pai
式中 pai , par 分别为
入射声压和反射声压。
1本课题得到陕西省重点实验室项目(05JS07)的资助。 -1-
图 1 声波与材料相互作用示意图 图 2 动量守恒分析图
层的吸声情况。作者曾在文献(15,16)中证明,纤维层在声波作用下随声波波动做同频率
的振动。此时材料所受声波压力 pa2 及其变化都较小。那么,式(15)中吸声系数的变化就
主 要 来 自 于 公 式 右 侧 第 2 项 的 分 母 的 变 化 , 即 , D = (2n − 1) λ , n = 1,2,3,⋅ ⋅ ⋅ 时 , 4
sin(
2πD λ
)
=
1 ,式(15)中的第
2
项达到极小,吸声系数为极大值。而
D
=
n
λ 2
,n
=
1,2,3,⋅ ⋅ ⋅
时,sin( 2πD ) = 0 ,式(15)中的第 2 项达到极大,吸声系数为极小值。另外,在 D = n λ
λ
2
时,声波波幅为零,材料波幅也为零,它们的振动速度和加速度均为零,那么材料所受到的

由于
par
=
Fr s
, pai
=
Fi s

所以,
a
=
1−
⎜⎜⎝⎛
Fr Fi
⎟⎟⎠⎞
2
…………………………(2)
Fi 为声波对材料的作用力, Fr 为材料对空气的反作用力。
将 Fr = m dv dt
带入(2)并推导可得
Fi = m dv1 dt
v1 = v 1 − a
参考文献
[1] Kuttruff,H. H.,Room Acoustics (Fourth edition)[M],London:published by Spon Press 11 New Fetter Lane,2000,163-173,39-44 [2] 杜功焕,朱哲民,龚秀芬.声学基础.第二版,南京:南京大学出版社,2001,271-278,98-102.168-193。 [3] Hansen, Colin H.,Solutions to problems in engineering noise control, South Australia: Department of Mechanical Engineering University of Adelaide,1996,178-181. [4] Sound Research Laboratories, Noise control in industry Sound Research Laboratories(3rd ed), London E. & FN. Spon,1991,245-247. [5] Rettinger, M.,Handbook of architectural acoustics and noise control a manual for architects and engineers,Blue Ridge Summit TAB Professional and Reference Books, 1988,184-186. [6] Barber,A., Handbook of noise and vibration control(6th ed.),Oxford, UK : Elsevier Advanced Technology,1992,315-323 [7] Barron, Randall F. Industrial noise control and acoustics, New York : Marcel Dekker,2003,269-273. [8] cavanaugh h,W.J,Wikes,W.J. 建筑声学-理论与实践,赵樱译,北京:机械工业出版社,2004,56-57 [9] 赵松龄.噪声的降低与隔.上海:同济大学出版社,1985,133-137. [10] 马大猷.现代声学理论基础.北京:科学出版社,2004, 210-237 [11] 张新安.振动吸声理论及声学设计.西安:西安交通大学出版社,2007,131-170 [12] 张新安,中国科技论文在线,薄纤维层吸声原理分析 200609-13 [13] ZHANG xian an,The fiber Viberation Sound absorptin theory, SAE Technical Papers,2007-01-2188 [14] 张新安,纤维层材料振动吸声理论,中国科技论文在线,200609-22 [15] Xin an Zhang,The Formula of Sound Absorption Spectrum For Fibrous Material,12th,International Meeting, on Low Frequency Noise and Vibration and its Control,Bristol, UK 18 – 20 September 2006,371-380 [16] 张新安,纤维性材料经验吸声公式,中国科技论文在线,200608-350
驻波管内半径,ρ0 , c0 分别为空气密度和声速)。而 ω
= 2πf
,同时,对空气来说 va
=
pa1 ρ0c0

通过对(11)式求解 (2) ,膜的振幅可表达为η a
=
r 2 pa2 8T
。设 k
=
pa2 ⋅ πr 2 ηa
将上述表达式带入(12)式可得
式中 式
a = 1− (2 pa2 )2
.(13)
4f
λ
则式(14)变为
a
=
1

0.41(
pa2 sin( 2πD
)
)
2
λ
(15)
下面对式(15)进行讨论。
(1)材料在不同声波作用力下的情况。
通常情况下,当板(膜)已经波动而表面变成凸字形时,再加反方向的力使其往回振动
时,由于板(膜)材料自身的应力,材料会对施力者产生一种“顶”的力量,这就使材料上所
1.板(膜)材料吸声理论公式的建立
在最大吸声系数对应频率处,材料背后空腔距离为 1/4 波长。如图 1,取频率为 400Hz,则背后空腔为 22cm.。
相关主题